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In the distrustful quantum cryptography model the different parties have conflicting interests and
do not trust one another. Nevertheless, they trust the quantum devices in their labs. The aim of
the device-independent approach to cryptography is to do away with the necessity of making this
assumption, and, consequently, significantly increase security. In this paper we enquire whether the
scope of the device-independent approach can be extended to the distrustful cryptography model,
thereby rendering it ‘fully’ distrustful. We answer this question in the affirmative by presenting a
device-independent (imperfect) bit-commitment protocol, which we then use to construct a device-
independent coin flipping protocol.

Introduction – A quantum protocol is said to be device-
independent if the reliability of its implementation can be
guaranteed without making any assumptions regarding
the internal workings of the underlying apparatus. The
key idea is that the certification of a sufficient amount
of nonlocality ensures that the underlying systems are
quantum and entangled. By dispensing with the (math-
ematically convenient but physically untestable) notion
of a Hilbert space of a fixed dimension, the device-
independent approach does away with many cheating
mechanisms and modes of failure, such as, for example,
those exploited in [1, 2]. In fact, a device-independent
protocol, in principle, remains secure even if the de-
vices were fabricated by an adversary. So far, device-
independent protocols have been proposed for quantum
key-distribution [3–6], random number generation [7, 8],
state estimation [9], and the self-testing of quantum com-
puters [10].

In many everyday scenarios (e.g. the use of credit cards
on the internet, secure identification, digital signatures),
we need to ensure security not only against an eaves-
dropper, but crucially against malicious parties partak-
ing in the protocol, i.e. when Alice and Bob do not trust
each other. Many important results in quantum cryptog-
raphy are related to the fundamental primitives in this
setting: While, on the one hand, quantum weak coin flip-
ping with arbitrarily small bias is possible [11], arbitrarily
concealing and binding quantum bit-commitment is im-
possible [12–14]. However, less secure but non-trivial bit-
commitment has been shown to be possible with trusted
devices [15].

It is not a priori clear, whether the scope of the device-
independent approach can be extended to cover crypto-
graphic problems with distrustful parties. In particular,
this setting presents us with a novel challenge: Whereas
in device-independent quantum key-distribution Alice
and Bob will cooperate to estimate the amount of non-
locality present, for protocols in the distrustful cryptog-
raphy model, honest parties can rely only on themselves.

In this paper we show that protocols in this model are
indeed amenable to a device-independent formulation.
As our aim is to provide a proof of concept, we con-
centrate on one of the simplest, yet most fundamental,
primitives in this model, bit-commitment. We present
a device-independent bit-commitment protocol, wherein
after the commit phase Alice cannot control the value of
the bit she wishes to reveal with probability greater than
cos2

(

π
8

)

≃ 0.854 and Bob cannot learn its value prior
to the reveal phase with probability greater than 3

4
. We

then use this protocol to construct a device-independent
coin flipping protocol with bias <∼ 0.336.

Bit-commitment – A bit-commitment protocol consists
of two phases. In the commit phase, Alice interacts with
Bob in order to commit to a bit. In the reveal phase,
Alice reveals the value of the bit, possibly followed by
some test that each party carries out to ensure that the
other party has not cheated. In the time between the
two phases, which may be of any duration, no actions
are taken. The security of a protocol is always analyzed
under the assumption that one of the parties is honest.
We designate by Pcont, the maximum of the average of
the probabilities with which Alice can reveal either value
of the bit without being caught cheating, and by Pgain

the maximum probability that dishonest Bob learns the
value of bit before the reveal phase without being discov-
ered, where these quantities are maximized over the set
of possible cheating strategies available to Alice and Bob.
The quantities ǫcont = Pcont −

1
2
and ǫgain = Pgain − 1

2

are termed ‘Alice’s control’ and ‘Bob’s information gain’.
A protocol with arbitrarily small ǫcont is called arbitrar-
ily binding, while a protocol with arbitrarily small ǫgain
is called arbitrarily concealing. As already mentioned,
quantum mechanics does not allow for a protocol to be
both arbitrarily binding and concealing at the same time.
In fact, for a ‘fair’ protocol, in the sense that ǫcont = ǫgain,
ǫcont is bounded from below by 0.207 [16]. The best
known protocol gives ǫcont =

1
4
[15]. In contrast, in any

classical protocol either Alice or Bob can cheat perfectly
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(ǫcont =
1
2
).

Device-independence – In our device-independent for-
mulation, we assume that each honest party has one or
several devices which are viewed as ‘black boxes’. Each
box allows for a classical input si ∈ {0, 1}, and produces
a classical output ri ∈ {0, 1} (the index i designates the
box). We make the assumption that the probabilities of
the outputs given the inputs for an honest party can be
expressed as P (r|s) = Tr

(

ρ
⊗

iΠri|si
)

, where ρ is some
joint quantum state and Πri|si is a POVM element cor-
responding to inputting si in box i and obtaining the
outcome ri. Apart from this constraint we impose no
restrictions on the boxes’ behavior. In particular, we al-
low a dishonest party to choose the state ρ (which she
can entangle with her system) and the POVM elements
Πri|si for the other party’s boxes.
The above assumption amounts to the most general

modeling of boxes that (i) satisfy the laws of quantum
theory, and (ii) are such that the physical process yield-
ing the output ri in box i depends solely on the input si,
i.e. the boxes cannot communicate with one another. It
is also implicit in our analysis that no unwanted informa-
tion can enter or exit an honest party’s laboratory. In a
‘fully’ distrustful setting, where the devices too cannot be
trusted, these conditions can be satisfied by shielding the
boxes. In particular, it is not necessary to carry out mea-
surements in space-like separated locations to guarantee
(ii), as in fundamental tests of nonlocality (see [8, 17]).
This observation is important because relativistic causal-
ity is by itself sufficient for perfect bit-commitment and
coin flipping [18, 19]. Hence, the fact that we do not rely
on space-like measurements makes the conceptual impli-
cations of our work clearer and the quantum origin of the
security evident.
The protocol – Our protocol is based on the

Greenberger-Horne-Zeilinger (GHZ) paradox [20, 21].
We consider three boxes A, B, and C with binary inputs,
sA, sB and sC , and outputs rA, rB and rC , respectively.
The GHZ paradox consists of the fact that if the inputs
satisfy sA⊕sB⊕sC = 1, we can always have the outputs
satisfy rA ⊕ rB ⊕ rC = sAsBsC ⊕ 1. This relation can be
guaranteed if the three boxes implement measurements
on a three-qubit GHZ state 1√

2
(|000〉 + |111〉), where

si = 0 (1) corresponds to measuring σy (σx). In contrast,
for local boxes this relation can only be satisfied with 3

4

probability at most. The nonlocal and pseudo-telepathic
nature of the GHZ paradox – the non-occurrence of cer-
tain input-output pairs that would necessarily occur in
any local theory – are key, both to ensure that when
both parties are honest the protocol does not abort, and
to ensure that a dishonest party always has a non-zero
probability of being caught cheating.
The protocol runs as follows. Alice has a box, A, and

Bob has a pair of boxes, B and C. The three boxes are
supposed to satisfy the GHZ paradox. Commit phase:
Alice inputs into her box the value of the bit she wishes

to commit to. Denote the input and output of her box
by sA and rA. She then selects a classical bit a uniformly
at random. If a = 0 (a = 1), she sends Bob a classical bit
c = rA (c = rA ⊕ sA) as her commitment. Reveal phase:
Alice sends Bob sA and rA. Bob first checks whether
c = rA or c = rA ⊕ sA. He then randomly chooses a pair
of inputs sB and sC , satisfying sB ⊕ sC = 1⊕ sA, inputs
them into his two boxes and checks that the GHZ paradox
is satisfied. If any of these tests fails then he aborts. Note
that if the parties are honest (and the boxes satisfy the
GHZ paradox), then the protocol never aborts.

Alice’s control – We consider the worst-case scenario,
wherein (dishonest) Alice prepares (honest) Bob’s boxes
in any state she wants, possibly entangled with her own
ancillary systems. Since the commit phase consists of
Alice sending a classical bit c as a token of her commit-
ment, without receiving any information from Bob, with
no loss of generality we may assume that Alice decides
on the value of c beforehand, and accordingly prepares
Bob’s boxes to maximize her control. Furthermore, since
Alice’s winning probability is invariant under the relabel-
ing, c → c⊕ 1, rA → rA ⊕ 1, rB → rB ⊕ 1, no value of c
is preferable, and we assume that she sends c = 0.

Suppose now that Alice wishes to reveal 0 (i.e. she
sends sA = 0). She will then carry out some operation
on her systems in order to decide the value of rA to be
sent. Bob will first check whether rA = 0 or rA⊕sA = 0,
and since sA = 0 it follows that Alice must send rA = 0.
Subsequently, Bob finds that the GHZ paradox is satis-
fied whenever rB 6= rC for a choice of inputs such that
sB 6= sC . Switching to a more compact notation in which
yi = (−1)ri (xi = (−1)ri) designates the output corre-
sponding to si = 0 (si = 1), Alice’s cheating probability
in this case equals 1

2
[P (yBxC = −1) + P (xByC = −1)].

On the other hand, suppose that Alice wishes to reveal 1.
Then, rA may take on any value (since Bob knows that
in this case rA = 0 or rA ⊕ 1 = 0), and hence, the only
relevant test is the satisfaction of the GHZ paradox, i.e.
whether rB ⊕ rC = sBsC ⊕ 1 ⊕ rA for a choice of inputs
such that sB = sC . Alice’s cheating probability then
equals 1

2
[P (yAyByC = −1) + P (xAxBxC = 1)]. Hence,

Alice’s optimal cheating probability is obtained by max-
imizing over

1

4

[

P (yBxC = −1) + P (xByC = −1)

+P (xAyByC = −1) + P (xAxBxC = 1)
]

(1)

since we consider the average probability that Alice can
reveal 0 and 1. As this expression involves only a single
measurement setting for Alice’s box, it admits a local de-
scription, implying that the maximum is obtained when
Alice’s box is deterministic. We see that in both cases
(i.e. xA = ±1), the problem reduces to maximizing the
Clauser-Horne-Shimony-Holt (CHSH) inequality [22], so
that Pcont = cos2

(

π
8

)

≃ 0.854.
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Bob’s information gain – Bob’s most general strategy
consists of sending Alice a box entangled with some an-
cillary system in his possession. Depending on the value
of c he receives from Alice (which is uniformly random
since Alice is honest), Bob carries out one of a pair of two-
outcome measurements on his system. We denote Bob’s
binary input and output by mB and gB, where mB = 0
(mB = 1) corresponds to the measurement he carries out
when Alice sends c = 0 (c = 1), and gB = 0 (gB = 1)
corresponds to his guessing that Alice has committed to
0 (1). Bob’s information gain is

Pgain

=
∑

sA,rA, a

P (sA, rA, a)P (gB = sA | mB = rA ⊕ (sA · a))

=
1

4

∑

sA, rA=0, 1

P (rA | sA)
[

P (gB = sA | mB = rA)

+P (gB = sA | mB = rA ⊕ sA)
]

=
1

4

∑

sA, rA=0, 1

[

P (rA, gB = sA | sA, mB = rA)

+P (rA, gB = sA | sA, mB = rA ⊕ sA)
]

. (2)

Using the fact that P (k, 0|0, k) + P (0, 1|1, k) +
P (1, 1|1, k) ≤ 1 and P (0, 0 | 0, 0) + P (1, 0 | 0, 1) ≤
1, which follow from no-signaling (i.e.
∑

l=0, 1 P (iA, iB | jA, jB) = P (iA | jA) and the
same relation with A ↔ B) and normalization, we
obtain that Pgain = 3

4
.

Optimal cheating strategies – Both Alice and Bob have
a number of simple optimal cheating strategies available
to them. Interestingly, both can optimally cheat using
a three-qubit GHZ state and having the measurements
of the honest party correspond to the measurement of
σy and σx axes (corresponding to inputting 0 and 1), as
in the GHZ paradox described above. This implies that
the device-dependent version of our protocol, in which
(honest) Alice and Bob share a GHZ state and measure
σy and σx (recall that in the device-dependent setting an
honest party can trust its measurement devices), does not
afford more security. Our protocol has thus the curious
property that its device-dependent version is essentially
device-independent, in the sense that its security is not
compromised in the event that an honest party cannot
trust its measurement devices.
Using the GHZ state, dishonest Alice’s strategy con-

sists of measuring the polarization of her qubit along
the axis n̂ = 1√

2
(x̂+ ŷ). If she obtains 0 then she

knows she has ‘prepared’ Bob’s boxes in the state
1√
2

(

e−iπ/8 |00〉+ eiπ/8 |11〉
)

, and she sends c = 0. If she

wishes to reveal 0, she tells Bob she had input 0 and ob-
tained 0. If she wishes to reveal 1, she tells Bob she had
input 1 and obtained 0. Similarly, if she obtains 1, she
sends c = 1, etc. It is straightforward to verify that this
strategy gives rise to Pcont = cos2

(

π
8

)

≃ 0.854.

Using the GHZ state, dishonest Bob’s strategy consists
of having Alice measure σy and σx according to the value
of her commitment. Bob then measures the polarization
of one of his qubits along the y axis and that of the other
along the x axis. Whenever his outcomes are correlated,
in the event that Alice sends c = 0 (c = 1) he guesses that
she has input 1 (0), while whenever his outcomes are anti-
correlated he guesses the reverse. It is straightforward to
verify that this strategy gives rise to an information gain
of 3

4
.

Device-independent coin flipping – (Strong) coin flip-
ping is defined as the problem of two remote distrustful
parties having to agree on a bit. If both parties are hon-
est, then the outcome of the coin is uniformly random.
The degree of security afforded by a protocol is quanti-
fied by the biases ǫAi = PA

i − 1
2
and ǫBi = PB

i − 1
2
, where

PA
i (PB

i ) is Alice’s (Bob’s) maximal probability of bias-
ing the outcome to i. The quantity ǫ = max

{

ǫAi , ǫ
B
j

}

i,j

is usually referred to as the bias of the protocol. A pro-
tocol is said to be fair whenever Alice and Bob enjoy
the same bias. Like bit-commitment, and indeed most
non-trivial protocols in distrustful cryptography, in the
classical world its security is completely breached if no
limits are placed on a dishonest party’s computational
power. In the quantum world the story is different [24],
the optimal bias is ǫ = 0.207 [25, 26] (a weaker version
of coin flipping, on the other hand, allows for arbitrarily
small bias [11]).

We remind the reader of a standard method to imple-
ment coin flipping using bit-commitment: Alice commits
to a random bit a, Bob sends a random bit b to Alice,
and then Alice reveals a. The outcome of the coin flip
is just a ⊕ b. In particular, ǫAi = ǫcont and ǫBi = ǫgain.
Using this construction with our device-independent bit-
commitment protocol, we obtain a device-independent
coin flipping protocol with biases ǫAi = cos2

(

π
8

)

− 1
2
≃

0.354 and ǫBj = 1
4
.

Since ǫAi > ǫBj , this construction advantages Alice. It
is possible to lower the bias by equalizing the individual
biases. Consider a new coin flipping protocol which con-
sists of two repetitions of the above coin flipping protocol
as follows. The result of the first (in which Alice com-
mits) is used to determine who commits in the second.
Say if the outcome is 0 (1), then Alice (Bob) commits in
the second. It is no longer a priori clear what strategy
Alice should adopt in the first repetition, since, in prin-
ciple, it may be beneficial for her to adopt one in which
she sometimes loses the first coin flip, but increases her
chances of making it to the second repetition (by not
getting caught cheating in the first repetition in which
case Bob aborts). Nevertheless, it is evident that Alice’s
maximal cheating probability is bounded from above by
cos4

(

π
8

)

+
(

1− cos2
(

π
8

))

· 3
4
≃ 0.838. On the other hand,

Bob never gets caught cheating in the first repetition
(though he may of course lose), therefore Bob’s maximal



4

cheating probability is just 3
4
cos2

(

π
8

)

+ 1
4
· 3
4
≃ 0.827.

By allowing for more repetitions (the n− 1 th repetition
determining who commits in the n th, etc.) we obtain
that the biases ǫAi and ǫBj of the resulting protocol are
bounded from above by ≃ 0.336.
Discussion – By introducing explicit device-

independent bit-commitment and coin flipping protocols,
we have shown that protocols in the distrustful cryptog-
raphy model – wherein Alice and Bob do not cooperate
to estimate the amount of nonlocality present – are
amenable to a device-independent formulation. The
fascinating connection between quantum nonlocality
and cryptography, first noted by Ekert twenty years ago
[27], is thus seen to apply also in the very rich field
of cryptography with mutually distrustful parties (and
devices), affording us with a novel perspective on the
connection between cryptography and the foundations
of quantum mechanics.
To conclude, we would like to point out some notable

features of our protocols. (i) The protocols are single-
shot and do not rely on any statistical estimation of the
amount of nonlocality such as in the testing the degree
of violation of a Bell inequality (even though their secu-
rity is of course based on nonlocality). (ii) The device-
dependent version of our protocol does not offer more
security than the device-independent version. (iii) Since
our security analysis is device-independent, it also covers
the case where Alice’s and Bob’s outputs are affected by
noise. Note that the analysis of noisy classical coin flip-
ping in [28, 29] allows us to compute the quantum advan-
tage in this case. (iv) The security afforded by our device-
independent protocols is reasonably close to (though of
course greater than) that of the best known device-
dependent protocols. For the bit-commitment protocol
we have Pcont ≃ 0.854 and Pgain = 3

4
, as compared to

Pcont = Pgain = 3
4
for the best known device-dependent

protocol. The coin flipping protocol has a bias of <∼ 0.336,
as compared to 0.207 in the device-dependent case. (v)
Our work allows the study of bit-commitment and coin
flipping in the context of theories other than quantum
mechanics. Indeed, it relies only on the GHZ paradox
(to define the protocol in the honest case), on Tsirelson’s
bound on the CHSH inequality violation (which limits
Alice’s control) and on the no-signaling principle (which
limits Bob’s information gain). Curiously, the security of
the protocol would increase if Tsirelson’s bound were to
decrease, reaching Pcont = Pgain = 3

4
if it were equal to

the local causal bound. In a theory constrained only by
no-signaling, our protocol is no longer secure as PR boxes
[30] allow to maximally violate the CHSH inequality, im-
plying Pcont = 1. Note that perfect bit-commitment
was shown to be possible provided that honest parties
have access to PR boxes and under the strong hypothe-
sis (which we do not make) that a dishonest party can-
not in any way tamper with the boxes [31]. It is an open
question whether there exists a quantum bit-commitment

protocol that is secure against dishonest parties limited
only by the no-signaling principle, as is the case in quan-
tum key-distribution [4, 32].
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