
Practical Quantum Coin Flipping
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1LTCI, CNRS - Télécom ParisTech, Paris, France
2LIAFA, CNRS - Université Paris 7, Paris, France
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We show that a single quantum coin flip with security guarantees that are strictly better than
in any classical protocol is possible to implement with current technology. Our protocol takes into
account all aspects of an experimental implementation like losses, multi-photon pulses emitted by
practical photon sources, channel noise, detector dark counts and finite quantum efficiency. We
calculate the abort probability when both players are honest, as well as the probability of one player
forcing his desired outcome. For channel length up to 21 km, we achieve honest abort and cheating
probability that are better than in any classical protocol. Our protocol is easy to implement using
attenuated laser pulses, with no need for entangled photons or any other specific resources.

PACS numbers: 03.67.-a, 03.67.Dd

Introduction – Coin Flipping is a fundamental cryp-
tographic primitive with numerous applications, where
two distrustful parties separated by distance wish to
agree on a random bit [1]. Classically, it is impossible
to have a coin-flipping protocol with cheating probability
less than 1, unless computational assumptions are consid-
ered. In other words, a dishonest player can force the out-
come of the coin flip with probability 1. In the quantum
model, where the two parties share a quantum channel, it
was also proven that perfect coin flipping is information-
theoretically impossible [2]. On the other hand, several
quantum protocols have been proposed that achieve a
cheating probability lower than 1 [3–5].

These results are important from a theoretical point
of view, however they assume perfect implementation of
the protocols. The situation is more subtle when we deal
with realistic conditions encountered in experimental im-
plementations, for example multi-photon pulses emitted
by practical sources, losses and channel noise, since if
taken into account they may render the protocols inse-
cure in practice [3–7].

To study the security of practical coin flipping proto-
cols, in addition to the cheating probability, we need to
take into account the probability that the honest play-
ers abort the protocol. Hänggi and Wullschleger [8] gave
tight bounds for the cheating probability p of any classi-
cal or quantum coin flipping protocol, where the honest
players abort with probability H. Hence, the goal of
any quantum implementation of coin flipping would be
to achieve both honest abort and cheating probability
strictly smaller than in any classical protocol.

Recently, protocols that address some of the issues
that arise in experimental implementations have been
proposed. A major step was taken by Berlin et al [9],
who proposed a protocol that is completely impervious
to losses and achieves cheating probability 0.9. In their
theoretical analysis, they do not deal with noise and thus
the honest abort probability is always zero. The main
disadvantage of this protocol is that it becomes com-

pletely insecure in the presence of multi-photon pulses,
i.e. when the implementation is based on an attenuated
laser source rather than a perfect single-photon source.
Subsequently, Berlin et al [10] implemented this proto-
col using a source of entangled qubits and hence avoid-
ing multi-photon pulses. In order to deal with the noise
present in the experiment, they defined a different primi-
tive, sequential coin flipping, instead of a single coin flip,
and conjectured that this primitive still remains impos-
sible classically.

Chailloux [11] proposed an improved protocol with
cheating probability 0.86. Last, Barrett and Massar [12]
had introduced the primitive of string coin flipping, as an
alternative to what they considered impossible to achieve
experimentally, i.e. a single coin flip. However, this prim-
itive turned out to be possible classically.

Our work – In the current letter, we present a quan-
tum coin flipping protocol that can be implemented us-
ing today’s technology and that has both honest abort
and cheating probability provably lower than the ones
achieved by any classical protocol [8]. Our protocol uses
a standard attenuated laser source and we analyse how all
practical aspects, like multi-photon pulses, channel noise,
system loss, detector dark counts and finite quantum ef-
ficiency, affect the honest abort and cheating probability.
We prove that for a single coin flip, if the noise is up to
2% and for channel length up to 21km, we can achieve
at the same time honest abort probability (≈ 1%) and
cheating probability (≈ 0.91) strictly smaller than clas-
sically possible. We note that, similar to quantum key
distribution protocols [13], our protocol is not completely
impervious to losses, but can tolerate up to a certain
amount of losses, which corresponds to distances in typ-
ical metropolitan area networks.

Protocol – Our protocol is a refinement of the one
proposed by Berlin et al [9]; the main difference is that
Alice sends K pulses instead of one, and uses an atten-
uated laser source to produce her states, instead of a
perfect single-photon or an entangled-photon source:
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1. Alice sends K photon pulses to Bob, where the
number of photons in each pulse i follows the Pois-
son distribution with pi = e−µµi/i! and mean pho-
ton number µ. She prepares each pulse in the state
|φαi,ci〉, i = 1, ...,K, such that:

|φαi,0〉 =
√
a|0〉+ (−1)αi

√
1− a|1〉

|φαi,1〉 =
√

1− a|0〉 − (−1)αi
√
a|1〉

where αi ∈R {0, 1} is the basis and ci ∈R {0, 1} is
the bit chosen by Alice.

2. Bob picks a measurement basis α′i for every pulse.
If his detectors do not click for any pulse, then he
aborts. Else, let j the first pulse he detected.

3. Bob picks c′j ∈R {0, 1} and sends it to Alice, to-
gether with the index j.

4. Alice reveals αj , cj .

5. If αj = α′j , Bob checks that the outcome of his mea-
surement is indeed |φαj ,cj 〉, otherwise he aborts.

6. If Bob has not aborted, then the outcome of the
protocol is b = cj + c′j .

Honest Player Abort – Any amount of noise in an
experimental implementation results in a non-zero honest
abort probability. Here, we analyse how exactly noise
and the other experimental parameters affect the honest
abort probability in order to ensure that the protocol
achieves a task which remains impossible classically. We
note that a similar analysis can also be done for the Berlin
et al. protocol. The situations where an honest abort
might occur with some probability are the following:

1. Bob’s detectors do not click in any of the K rounds
of the coin flip. The abort probability is 1.

2. Bob’s first detection is due to a dark count. The
abort probability is 1/4, since if αj = α′j (step 5),
he will abort with probability 1/2 (dark count is
totally random), else if αj 6= α′j he will not abort.

3. The noise in the channel alters the state of the pho-
ton. The abort probability is 1/2, since he will only
abort if αj = α′j (step 5).

The total honest abort probability is then:

H = ZK(1− dB)K + 1
4

∑K
i=1(1− dB)i−1dBZ

i

+
[
1− ZK(1− dB)K −

∑K
i=1(1− dB)i−1dBZ

i
]
e
2

where Z = p0+
(
1−p0

)(
1−Fη

)
: probability that no sig-

nal arrives at Bob’s detectors; F : system transmission ef-
ficiency; η: detector finite quantum efficiency; dB : prob-
ability of detector dark count; e: probability of wrong
measurement outcome due to noise.

Malicious Alice – Alice’s optimal cheating strategy
in our protocol is the same as the one in the Berlin et
al’s protocol. We assume Alice to be all-powerful, which
means that she controls all aspects of the implementa-
tion, including the errors in Bob’s detectors. It is in
her best interest to replace the lossy channel and Bob’s
faulty detectors with perfect ones, use a perfect single-
photon source and send no vacuum states. Under these
assumptions, honest Bob will always succeed in measur-
ing the first pulse that Alice sends and disregard the fol-
lowing ones. Hence, Alice’s optimal cheating strategy is
to create some entangled state, send one qubit to Bob
in the first pulse, wait for Bob to reply in step 3 and
then perform some measurement in her part of the en-
tangled state in order to decide what to reveal in step
4. This is no different from the cheating in Berlin et al’s
protocol, so the optimal cheating probability for Alice is
pA =

(
3 + 2

√
a(1− a)

)
/4 [9].

Malicious Bob – We consider Bob to be all-powerful,
meaning that he controls all aspects of the implemen-
tation, except for Alice’s photon source. Again, it is in
Bob’s best interest to replace the lossy and noisy channel
with a perfect one, in order to receive each time the cor-
rect state and maximize his cheating probability. More-
over, we assume he has perfect detectors and we also give
him the ability to know the number of photons in each of
the K pulses. Then, Bob’s optimal strategy is to receive
all K pulses and then perform some operation on the re-
ceived qubits in order to maximize his information about
Alice’s bit cj for some pulse j. It is important to note
that honest Alice picks a new uniformly random bit cj
for each pulse j and hence Bob cannot combine different
pulses in order to increase his information about a bit cj .

To simplify our analysis, we assume that in the case
where Bob has received at least two 2-photon pulses or
a pulse with 3 or more photons, then he can cheat with
probability 1. This probability is in fact very close to 1
and hence our upper bound on Bob’s cheating probability
is almost tight. We analyze the following events (in each
event, the remaining pulses contain zero photons):

A1 : (all 0-photon pulses) The optimal cheating strategy
for Bob is to try to guess Alice’s bit, which happens
with success probability 1/2.

A2 : (at least one 1-photon pulse) The optimal cheating
strategy for Bob is to measure in the computational
basis (Helstrom measurement)[9, 14]. It is proven
in [9] that this probability is equal to a.

A3 : (one 2-photon pulse) It can be proven that for our
states the optimal measurement in a 2-photon pulse
outputs the correct bit with probability equal to a.

A4 : (one 2-photon pulse, at least one 1-photon pulse)
Bob will try to benefit from the 2-photon pulse (see
discussion below), and if he fails, he will continue
like in A2, since the pulses are independent.
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Thus, we get an upper bound for the total probability of
cheating Bob:

pB ≤
∑4
i=1P (Ai) ∗ P (cheat|Ai) + (1−

∑4
i=1 P (Ai)) · 1

Note that an honest Alice prepares the K pulses in-
dependently, which means that a measurement on any
of them does not affect the rest. Consequently, Bob can
measure each pulse independently, without affecting the
remaining pulses. Moreover, the probability for each of
these events depends on the protocol parameter K and
on µ (which is controlled by Alice).

It remains to bound P (cheat|A4), i.e. the case where
Bob has received one 2-photon pulse and some single pho-
ton pulses. Bob will try to profit from the two identical
quantum states in one pulse. On one hand, he can per-
form the optimal distinguishing measurement on the two
photons, which as we said earlier gives a correct answer
with probability a. On the other hand, he can perform a
conclusive measurement on the 2-photon pulse that with
some probability will give a correct answer and with some
probability will give no answer at all (in which case Bob
can use one of the 1-photon pulses). In fact, none of these
two strategies is optimal. In general, Bob will perform
some measurement that with probability c will provide
an answer, which will be correct with probability γ, and
with probability (1− c) the measurement will provide no
answer, in which case Bob will use a single-photon pulse
to guess correctly with probability a. Hence,

P (cheat|A4) = maxM{cγ + (1− c)a}

over all possible measurements of Bob.
Let M be the optimal measurement that provides with

probability c an answer that is correct with probability
γ and with probability (1− c) provides an answer that is
correct with probability γ′. On one hand, we have that
γ′ ≥ 1/2 (since Bob can always guess with probability
1/2) and on the other hand this measurement cannot be
correct with probability larger than a (since we know that
the optimal measurement has probability a). Hence, we
have x ≡ cγ + (1 − c)1/2 ≤ a from which we get that
c ≥ 2x− 1. Then, using the above equation we have:

P (cheat|A4) = cγ + (1− c)a ≤ x+ (2− 2x)(a− 1
2 )

≤ −2a2 + 4a− 1 (1)

Equation (1) provides an analytical upper bound on the
cheating probability for event A4 and hence we can now
calculate the cheating probability pB .
Fairness of the protocol – In order to have equal

cheating probabilities, we adjust a so that pA = pB .
Experimental parameters – We have introduced a

coin flipping protocol that takes into account all experi-
mental parameters. In the following simulations, we use
parameter values commonly referenced in the literature
[15, 16], which can be implemented using today’s tech-
nology.

The photon signals that Alice sends arrive with a prob-
ability F (transmission efficiency) at Bob’s site, and they
are detected with a probability η (detector quantum effi-
ciency). For an optical channel, F is related to the chan-
nel absorption coefficient β, the channel length L and a
distance-independent constant loss k, via the equation:
F = 10−(βL+k)/10. The values used in our simulations
are shown in the following table.

Parameter Value

Receiver constant loss [dB] k 1
Absorption coefficient [dB/km] β 0.2
Detection efficiency η 0.2
Dark counts (per slot) dB 10−5

Signal error rate e 0.01

Note that we consider the probability of a signal and
a dark count occurring simultaneously negligible.

Results – Our protocol requires a minimum honest
abort probability equal to half of the probability of noise
in the channel. We consider an acceptable honest abort
probability smaller than 2%, thus by setting the honest
abort probability to fixed values up to 0.02 for differ-
ent channel lengths, we find the necessary rounds K and
the optimal mean photon number µ that minimize the
cheating probability for a fair protocol.

There is an inversely proportional relation between the
honest abort probability and the optimal µ (Figure 1).
The same holds for the number of rounds K in relation to
the honest abort probability and for the same µ. When µ
is increased in order to achieve the desired honest abort
probability, the required number of rounds is reduced. In
all our simulations, K did not exceed 15000.

In Figure 2 we plot our protocol’s cheating probability
versus the honest abort probability H for four different
channel lengths, and compare this to the optimal classical
cheating probability, which is equal to 1−

√
H/2 [8].
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Figure 1: Quantum honest abort probability vs mean photon
number µ for different channel lengths.
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Figure 2: Quantum honest abort vs cheating probability for
different channel lengths and comparison to the classical case.
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Figure 3: Quantum state coefficient vs honest abort proba-
bility.

For any length up to 21 km and honest abort prob-
ability smaller than 2%, we can find a µ such that the
maximum cheating probability of our protocol is better
than in the classical case. Figure 3 shows how the co-
efficient a of the protocol states changes in relation to
the honest abort probability, for three different channel
lengths.

Discussion – We have shown for the first time that
flipping a single coin with security guarantees strictly
stronger than in any classical protocol can be achieved
with present quantum technology, and more precisely
with a standard attenuated laser source. This implies
that quantum information can be used beyond quantum
key distribution (QKD), to achieve in practice more dif-
ficult cryptographic tasks in a model where the parties
do not trust each other. We note that implementations
of such tasks will be subject to the same issues related
to the existence of side channels as in QKD (eg. [17]).

We observe that the maximal communication distance

that can be achieved is significantly smaller than in QKD
[13]. In principle, we cannot expect to have the same re-
sults as in QKD, since the setting is much harder. Here,
the adversary is the other player, so no cooperation is
possible, thus excluding error-correction and privacy am-
plification. With the parameter values that we used, the
limit to the channel length is 21 km. We can increase
the channel length by improving the experimental pa-
rameters, in particular the signal error rate.

Even though Chailloux [11] proposed a protocol with
lower cheating probability than the Berlin et al, it does
not perform as well in the presence of noise.

Last, it is interesting to see if there is a way to reduce
the effect of noise to the honest abort probability with
current technology. We note that this seems hard, since
any attempt of Alice to protect the qubits, via a repeti-
tion error correcting code for example, will immediately
increase the cheating probability of Bob.
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