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Abstract

In this paper, we present a loss-tolerant quantum strong coin flipping protocol with bias
ε ≈ 0.359. This is an improvement over Berlin et al. ’s protocol [BBBG08] which achieves a bias
of 0.4. To achieve this, we extend Berlin et al. ’s protocol by adding an encryption step that
hides some information to Bob until he confirms that he successfully measured. We also show
using numerical analysis that a we cannot improve this bias by considering a k-fold repetition
of Berlin et al. ’s protocol for k > 2.

1 Introduction

Coin flipping is a cryptographic primitive that enables two distrustful and far apart parties, Alice
and Bob, to create a random bit that remains unbiased even if one of the players tries to force a
specific outcome. It was first proposed by Blum [Blu81] and has since found numerous applications
in two-party secure computation. In the classical world, coin flipping is possible under computational
assumptions like the hardness of factoring or the discrete log problem. However, in the information
theoretic setting, it is not hard to see that in any classical protocol, one of the players can always
bias the coin to his or her desired outcome with probability 1.

Quantum information has given us the opportunity to revisit information theoretic security in
cryptography. The first breakthrough result was a protocol of Bennett and Brassard [BB84] that
showed how to securely distribute a secret key between two players in the presence of an omnipo-
tent eavesdropper. Thenceforth, a long series of work has focused on which other cryptographic
primitives are possible with the help of quantum information. Unfortunately, the subsequent re-
sults were not positive. Mayers and Lo, Chau proved the impossibility of secure quantum bit
commitment and oblivious transfer and consequently of any type of two-party secure computa-
tion [May97, LC97, DKSW07]. However, several weaker variants of these primitives have been
shown to be possible [HK04, BCH+08].

The case of coin flipping is one of the most intriguing ones. Even though the results of Mayers
and of Lo and Chau exclude the possibility of perfect quantum coin flipping, it still remained open
whether one can construct a quantum protocol where no player could bias the coin with probability
1. A few years later, Aharonov et al. [ATVY00] provided such a protocol where no dishonest player
could bias the coin with probability higher than 0.9143. Then, Ambainis [Amb01] described an
improved protocol whose cheating probability was at most 3/4. Subsequently, a number of different
protocols have been proposed [SR01, NS03, KN04] that achieved the same bound of 3/4. Finally,
it was shown in [CK09] how to achieve a strong coin flipping with cheating probability 1√

2
using a

weaker coin flipping primitive developed by Mochon [Moc07].
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The results mentioned earlier don’t take into account practical issues such as losses, noise or
other imperfections in the quantum apparatus used. In 2008, Berlin et al. presented a loss-tolerant
quantum coin flipping with bias 0.4. In this protocol, honest players don’t always succeed when
they perform a measurement (the measurement sometimes abort) but when they do succeed, they
always output the correct value. This is in contrast with noise tolerance where an honest player could
perform a measure with a wrong outcome without knowing it. Recently, Aharon et al . [AMS10]
created a loss-tolerant quantum coin flipping protocol with bias ε ≈ 0.3975. In another flavor,
Barrett and Massar [BM04] showed how to do bit-string generation (a weaker notion of coin flipping)
in the presence of noise.

In this paper, we continue the study of loss-tolerant quantum coin flipping protocol. We con-
struct such a protocol with bias ε ≈ 0.359. To achieve this bias, we extend Berlin et al. ’s protocol
by adding an encryption step that hides some information to Bob as long as he doesn’t confirm
that he successfully measured. Notice that we improve the bias of the protocol by adding only a
classical layer on top of Berlin et al. ’s protocol. Let us emphasize that in this paper we only look at
information theoretic security and we do not discuss computational security or security in restricted
models like the bounded-storage or noisy-storage model [DFSS08, WST08].

It would be interesting whether to see whether such techniques can be used to deal with loss-
tolerance in other practical models such as the bounded/noisy storage model. Moreover, finding a
noise-tolerant quantum coin flipping with information theoretic security and small bias remains an
interesting open question.

2 Our work

We continue [BBBG08]’s work and try to create practical quantum coin flipping protocols. As their
protocol, we ask Alice and Bob to send several copies of single qubit states. Moreover, we don’t
require honest players to have any quantum memories. On the other hand, we consider cheating
players as being all powerful.

As explained in [BBBG08], one of the main difficulties in creating a bit-commitment based coin
flipping lies in the states you send to Bob. The existence of a conclusive measurement between the
states sent to Bob allows him to cheat perfectly even if the states are close. Berlin et al. ’s protocol
is of the following form.

• Alice sends a state σ to Bob.

• Bob measures this state in some basis B (possibly dependent on some of his private coins). If
Bob successfully measures then they continue the protocol. Otherwise, they start again

In this protocol, the state σ is chosen very carefully such that a cheating Bob cannot take advantage
of the fact, that he can reset the protocol. This strongly limits the good choices for σ. To partially
overcome this problem, we use the following high-level scheme

• Alice picks r ∈R {0, 1} and sends Er(σ) where Er is some quantum operation that hides some
information about σ

• Bob measures in some basis B. If Bob successfully measures then they continue the protocol.
Otherwise, they start again

• Alice reveals r and then they continue the protocol
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While doing this, one must be careful that an honest Bob will still be able to exploit the measurement
of the encrypted state and that Alice cannot use this to cheat.

Applying this scheme on a two-fold parallel repetition of Berlin etal’s protocol, we show the
following

Theorem 2.1 There is a loss-tolerant quantum coin flipping protocol with bias ε ≈ 0.359

Notice that without this encryption step extra step, the resulting scheme would not be loss-
tolerant but the bias would remain the same.

3 Preliminaries

3.1 Definitions

The statistical distance over classical distributions is defined as ∆({Xi}i∈{0,1}n , {Yi}i∈{0,1}n) =
1
2

∑
i |Xi − Yi|
Following [NC00], we define the fidelity and the trace distance for any quantum states ρ, σ as

follows

D(ρ, σ) =
1

2
|σ − ρ| with |A| =

√
A†A

F (ρ, σ) = tr(

√
ρ1/2σρ1/2)

Note that the fidelity is sometimes defined as (tr(
√
ρ1/2σρ1/2))2.

For two quantum states ρ, σ such that, ρ =
∑

i pi|i〉〈i| and σ =
∑

i qi|i〉〈i| we have D(ρ, σ) =
∆({Xi}, {Yi}) and F (ρ, σ) =

∑
i

√
piqi.

Definition 3.1 Let E and F any two ensembles of quantum states and let ρ any quantum state.
We define:

F (ρ,E) = max
σ∈E

F (ρ, σ)

F (E,F ) = max
σ∈E,σ′∈F

F (σ, σ′)

Finally, we define a (strong) coin flipping protocol

Definition 3.2 A coin flipping protocol with bias ε consists of instructions given to Alice and Bob
and an outcome x ∈ {0, 1,⊥} (⊥ corresponds to aborting the protocol) such that

• If Alice and Bob are honest then Pr[x = 0] = Pr[x = 1] = 1/2

• For any cheating Alice P ∗A = max{Pr[x = 0],Pr[x = 1]} ≤ 1/2 + ε

• For any cheating Bob P ∗B = max{Pr[x = 0],Pr[x = 1]} ≤ 1/2 + ε

For completeness, we also define weak coin-flipping protocols

Definition 3.3 A weak coin flipping protocol with bias ε consists of instructions given to Alice and
Bob and an outcome x ∈ {0, 1,⊥} (⊥ corresponds to aborting the protocol) such that
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• If Alice and Bob are honest then Pr[x = 0] = Pr[x = 1] = 1/2

• For any cheating Alice P ∗A = Pr[x = 0] ≤ 1/2 + ε

• For any cheating Bob P ∗B = Pr[x = 1] ≤ 1/2 + ε

Intuitively, x = 0 corresponds to the fact that Alice wins and x = 1 to the fact that Bob wins. Note
that a cheating player can win with probability less than 1/2 + ε but can lose with probability 1.

3.2 Useful facts

Proposition 3.4 [NC00] For any two states ρ0, ρ1 and any pure state |φ〉, we have

D(ρ0, ρ1) ≥ |〈φ|ρ0|φ〉 − 〈φ|ρ1|φ〉|

Proposition 3.5 [NC00] For any two states ρ, σ such that ρ =
∑

i pi|φi〉〈φi| and σ =
∑

i qi|φi〉〈φi|,
we have

D(ρ, σ) ≤ ∆({Xi}, {Yi})

Proposition 3.6 [FG99] For any quantum states ρ, σ, we have

1− F (ρ, σ) ≤ D(ρ, σ) ≤
√

1− F 2(ρ, σ)

Proposition 3.7 [KN04] For any quantum states ρ, σ0, σ1, we have

F 2(ρ, σ0) + F 2(ρ, σ1) ≤ 1 + F (σ0, σ1)

Proposition 3.8 [Joz94] For any quantum states ρ, σ0, σ1, we have

F 2(ρ,
∑
i

piσi) ≥
∑
i

piF
2(ρ, σi)

Proposition 3.9 [Hel67] Suppose Alice has a bit c ∈R {0, 1} unknown to Bob. Alice sends a
quantum state ρc to Bob. We have

Pr[Bob guesses c] ≤ 1

2
+
D(ρ0, ρ1)

2

4 The protocol

4.1 Quantum states used

Consider the two orthonormal basis B0(λ) = {|φ00(λ)〉, |φ01(λ)〉} and B1(λ) = {|φ10(λ)〉, |φ11(λ)〉} for
any λ ∈ R with:

|φ00(λ)〉 =
√
λ|0〉+

√
1− λ|1〉

|φ01(λ)〉 =
√

1− λ|0〉 −
√
λ|1〉

and

|φ10(λ)〉 =
√
λ|0〉 −

√
1− λ|1〉

|φ11(λ)〉 =
√

1− λ|0〉+
√
λ|1〉
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|φbc〉 corresponds to the encoding of bit c in basis b.
Finally, we define

ρc =
1

2

∑
i

|φic〉〈φic| = λ|c〉〈c|+ (1− λ)|1− c〉〈1− c|

4.2 Berlin etal’s protocol

Berlin etal’s protocol (parameter λ omitted)

1. Alice chooses at random b ∈R {0, 1} and c ∈R {0, 1} and sends |φbc〉 to Bob.

2. Bob chooses b′ ∈R {0, 1} and measures the qubit he receives in basis Bb′ . If
his measurement fails, he announces it to Alice and they repeat the protocol
from step 1. If the measurement succeeds continue.

3. Bob picks c′ ∈R {0, 1} and sends c′ to Alice

4. Alice reveals b, c

5. If b = b′, Bob checks that what he measured corresponds to |φbc〉. If it
doesn’t match, he aborts.

6. The outcome of the protocol is x = c⊕ c′.

This protocol is loss tolerant in the sense that a cheating Bob cannot gain advantage in the
fact that he can restart the protocol when his measurement fails. This protocol has the following
security parameters:

1. P ∗A = 3
4 +

√
λ(1−λ)
2

2. P ∗B = λ

By taking λ = 0.9, we have P ∗A = P ∗B = 0.9 and their protocol achieve a bias of 0.4.
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4.3 Our protocol

Our protocol

1. Alice chooses at random b1, b2 ∈R {0, 1} ; c ∈R {0, 1} and r1, r2 ∈R {0, 1}
sends two quantum registers |φbic⊕ri〉 for i ∈ {1, 2} to Bob.

2. Bob chooses b′1, b′2 ∈R {0, 1} and measures each register i he receives in
basis Bb′i . If one of his measurements fails, he announces it to Alice and
they repeat the protocol from step 1. If the measurement succeeds, Bob
announces this fact to Alice and they continue.

3. Alice sends r1, r2 to Bob.

4. Bob picks c′ ∈R {0, 1} and sends c′ to Alice

5. Alice reveals b1, b2, c

6. For each register i for which bi = b′i, Bob checks that what he measured
corresponds to |φbic⊕ri〉. If one of the measurements does not match, he
aborts.

7. The outcome of the protocol is x = c⊕ c′.

This protocol is closely related to a two-fold parallel repetition of Berlin etal’s protocol. Such a
repetition would directly improve the bias if we did not require loss tolerance. We add an additionnal
step in this protocol. Alice hides some information about the state she sends using 2 private bits
r1, r2 that she reveals as soon as Bob confirms that he measured successfully. As we will show, this
makes the protocol loss-tolerant again.

5 Security proofs

If Alice and Bob are honest then Bob never aborts and x = c ⊕ c′ is random. We now analyse
separately cheating Alice and cheating Bob.

5.1 Cheating Alice

We consider a cheating Alice and an honest Bob.

5.1.1 General framework for checking Bob

The way Bob checks is closely related to the following procedure

• Alice sends a state σ in space Y

• At a later stage, Alice sends a bit i to Bob in space X

• Bob checks that the first state Alice sends in Y is the state |ψi〉 for some state |ψi〉.
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We want to show the following:

Proposition 5.1
Pr[ Alice passes Bob’s test ] ≤ F 2(σ, L)

where L = {
∑

j pi|φj〉〈φj | :
∑

j pj = 1}

Proof: Let σ the first state in Y sent by Alice and let σ̃ the state in XY after Alice reveals
i. Since Bob immediately measures the register X in the computational basis, there is an state σ̃
which will give the best cheating probability of the form σ̃ =

∑
i pi|i〉〈i| ⊗ |ψi〉〈ψi| and

Pr[ Alice passes Bob’s test ] =
∑
i

||ψi〉〈φi||2

Similarly, if we fix σ̃ = |Ω〉〈Ω| where |Ω〉 =
∑

i

√
pi|i, φi〉, we get that Pr[ Alice passes Bob’s test ] =∑

i ||ψi〉〈φi||2 This means that we can suppose w.log that after the last step, the state in XY is
pure.

Let σ̃ = |Ω〉〈Ω| where |Ω〉 =
∑

i

√
pi|i, φi〉. Let K subspace of quantum pure states spanned by

{|i〉 ⊗ |φi〉}. Let PK =
∑

i |i〉〈i| ⊗ |φi〉〈φi| the projection on subspace K. Bob’s check is equivalent
to projecting on the subspace K.

Pr[ Alice passes Bob’s test ] = tr(PK σ̃PK)

= tr(PK |Ω〉〈Ω|PK) = max
|u〉∈L

|〈Ω|u〉|2

≤ max
|u〉∈K

F 2(TrX (|Ω〉〈Ω|),TrX |u〉〈u|)

≤ max
|u〉∈K

F 2(σ,TrX |u〉〈u|)

≤ F 2(σ, L) since ∀|u〉 ∈ K, TrX |u〉〈u| ∈ L

5.2 Proof of security for cheating Alice

We consider a cheating Alice and an honest Bob. For the sake of the analysis, we can suppose
that honest Bob doesnt’ have losses when he measures (this does not help Alice). Our protocol
says that Bob measures each register i in a random basis Bb′i and performs a check if this basis
corresponds to the basis Bbi in which Alice encoded c. Similarly, we could say that Bob performs
this measurement at the very end (still picking b′i at random). In this case, we are in the framework
of the previous subsection except that with some probability, Bob chooses the wrong basis and does
not check anything.

Suppose Alice wants to reveal c in our protocol. Let ξ the state in XY she sends at state 1. Let
ξX = TrYξ and ξY = TrX ξ. Let Lc = {

∑
i∈{0,1} pi|φic〉〈φic|}

We have the following cases:

• Bob flipped b′1 6= b1 and b′2 6= b2. Bob does nt check anything Alice successfully reveals c with
probability 1.

• Bob flipped b′1 = b1 and b′2 6= b2. Bob checks the first register. From Proposition 5.1, Alice
successfully reveals c with probability no greater than F 2(ξX , Lc).
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• Bob flipped b′1 6= b1 and b′2 = b2. Bob checks the second register. Similarly, Alice successfully
reveals c with probability no greater than F 2(ξY , Lc).

• Bob flipped b′1 = b1 and b′2 = b2. Bob checks both registers. In the same way, Alice successfully
reveals c with probability no greater than F 2(ξ, L⊗2c ).

This gives us

Pr[ Alice successfully reveals c] =
1

4

(
1 + F 2(ξX , Lc) + F 2(ξY , Lc) + F 2(ξ, Lc⊗2)

)
We will now need the following Lemma

Lemma 5.2
F (L0, L1) ≤ 2

√
λ(1− λ)

Proof: Let ρ0 ∈ L0 and ρ1 ∈ L1 such that F (ρ0, ρ1) = F (L0, L1). By definition of L0, we have
〈0|ρ0|0〉 = λ and 〈0|ρ1|0〉 = 1−λ. This gives us D(ρ0, ρ1) ≥ 2λ− 1. Using Proposition 3.7, we have

F (ρ0, ρ1) ≤
√

1−D2(ρ0, ρ1)

≤
√

1− 4λ2 + 4λ− 1

≤ 2
√
λ(1− λ)

We can now prove our main statement

Proposition 5.3

P ∗A ≤
1

2
+

1

2

(
1 + f(λ)

2

)2

where f(λ) = 2
√
λ(1− λ)

Proof: We suppose w.log that Alice wants final outcome x = 0. This means that she has to
reveal c = c′. Let ξ the state sent by Alice and let ξX = TrYξ and ξX = TrYξ. Since c′ is random,
we have

P ∗A =
1

2

∑
c∈{0,1}

Pr[ Alice successfully reveals c]

≤ 1

2

∑
c∈{0,1}

1

4

(
1 + F 2(ξX , Dc) + F 2(ξY , Dc) + F 2(ξ,DDc)

)
≤ 1

8
(2 + 1 + F (D0, D1) + 1 + F (D0, D1) + 1 + F (DD0, DD1)) (Proposition 3.6)

≤ 1

2
+

1

2

(
1

4
+

1

2
F (D0, D1) +

1

4
F 2(D0, D1)

)
≤ 1

2
+

1

2

(
1 + f(λ)

2

)2

(f(λ) ≥ F (D0, D1) from Lemma 5.2)
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5.3 Cheating Bob

The main part here is to show the loss-tolerance of the protocol. This means that a cheating
Bob cannot take advantage of the fact that he’s allowed to reset the protocol in case one of his
measurements failed.

5.4 Cheat Sensitivity

For a fixed c and r1, r2, let ξ
r1,r2
c sent by Alice. We have

ξr1,r2c =
1

4

∑
b1,b2∈{0,1}

|φb1c⊕r1φ
b2
c⊕r2〉〈φ

b1
c⊕r1φ

b2
c⊕r2 |

= ρc⊕r1 ⊗ ρc⊕r2
=

∑
u,v∈{0,1}

pu,vc⊕r1,c⊕r2 |u, v〉〈u, v|

where: if x = y then pyx = λ ; if x 6= y then pyx = 1− λ and pu,vc⊕r1,c⊕r2 = puc⊕r1 · p
v
c⊕r2 .

When receiving ξ, Bob performs a quantum operation

A(|u, v〉) = αu,v|ψu,v〉|0〉O + βu,v|ωu,v〉|1〉O

where O is the space that Bob measures to determine whether he should announce that he succeeded
the measurement or not. The outcome 0 in space O corresponds to the outcome where the protocol
continues. In a way, the cheating Bob postselects on the outcome being 0 since if he obtains 1, he
decides to start the protocol again. Once Bob successfully measured and after Alice sends r1, r2,
Bob has the following state depending on the operation A he performed averaging on r1, r2.

ξAc =
1

S

∑
r1,r2∈{0,1}
u,v∈{0,1}

pu,vc⊕r1,c⊕r2Γu,v|r1, r2, ψu,v〉〈r1, r2, ψu,v|

where

• The Γu,v’s are arbitrary real numbers. These numbers depend on the αu,v’s. We assume that
Bob can choose any value for these numbers.

• The |ψu,v〉’s are not necessarily orthogonal.

• S is a normalization factor.

Proposition 5.4 ∀A, D(ξA0 , ξ
A
1 ) ≤ D(ξ0, ξ1) where ξc = ρ⊗2c .

Proof: Let’s fix A. We have

D(ξA0 , ξ
A
1 ) =

1

S
D(

∑
r1,r2∈{0,1}
u,v∈{0,1}

pu,vr1,r2Γu,v|r1, r2, ψu,v〉〈r1, r2, ψu,v|,
∑

r1,r2∈{0,1}
u,v∈{0,1}

pu,v1⊕r1,1⊕r2Γu,v|r1, r2, ψu,v〉〈r1, r2, ψu,v|)

9



from convexity of the statistical distance (Proposition 3.5) , we have

D(ξA0 , ξ
A
1 ) ≤ 1

S
∆

(
{pu,vr1,r2Γu,v}r1,r2∈{0,1}

u,v∈{0,1}
, {pu,v1⊕r1,1⊕r2Γu,v}r1,r2∈{0,1}

u,v∈{0,1}

)
≤ 1

2S

∑
r1,r2∈{0,1}
u,v∈{0,1}

|pu,vr1,r2Γu,v − pu,v1⊕r1,1⊕r2Γu,v|

≤ 1

2S

∑
u,v

Γu,v
∑
r1,r2

|pu,vr1,r2 − p
u,v
1⊕r1,1⊕r2 |

To calculate this sum, if (r1, r2) = (u, v) then pu,vr1,r2 = λ2 and pu,v1⊕r1,1⊕r2 = (1−λ)2. If (r1, r2) = (u, v)

then pu,vr1,r2 = (1− λ)2 and pu,v1⊕r1,1⊕r2 = λ2. In the other cases, pu,vr1,r2 = pu,v1⊕r1,1⊕r2 . This gives us

D(ξA0 , ξ
A
1 ) ≤ 1

2S

∑
u,v

2Γu,v
(
λ2 − (1− λ)2

)
≤ 2λ− 1

Since, ξc = λ2|cc〉〈cc| + λ(1 − λ)(|01〉〈01| + |10〉〈10|) + (1 − λ)2|c c〉〈c c|, we have D(ξ0, ξ1) =
(λ2 − (1− λ)2) = 2λ− 1, which allows us to conclude.

We can now prove our main Claim

Proposition 5.5 P ∗B ≤ λ

Proof: Suppose w.log that Bob wants outcome x = 0. He wants to pick c′ = c. Before picking c′,
he has the state ξAc . We have

P ∗B = Pr[ Bob guesses c]

=
1

2
+
D(ξA0 , ξ

A
1 )

2
≤ λ

Theorem 5.6 There is a loss-tolerant quantum coin flipping protocol with bias ε ≈ 0.359

Proof: We just need to find λ that minimizes max(P ∗A, P
∗
B). The maximum is achieved for

λ ≈ 0.859 which gives P ∗A = P ∗B ≈ 0.859 which gives a bias ε ≈ 0.359.

6 Further discussion

Optimality of the bias The bias that we show here is actually not optimal for the protocol.
The reason is the following: in the analysis of cheating Alice (Section 5.2), we consider the cheating
probability for Alice depending on whether Bob checks the first bit, the second bit or both bits. For
each of these cases, we upper bound Alice’s cheating probability. But it appears that the cheating
probabilities for each of these cases is different and that Alice cannot cheat optimally for all these
cases at the same time. This slightly decreases Alice’s cheating probability. We can numerically
calculate calculate in this case that for λ ≈ 0.858, we have P ∗A = P ∗B ≈ 0.858. This gives a bias of
ε ≈ 0.858 which is a slight improvement over what is shown.
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Multiple repetition Our protocol consists of a two-fold repetition of Berlin et al . ’s protocol.
What happens if we consider a k-fold repetition? Even if it is difficult to calculate the exact cheating
probabilities of Alice and Bob in the case of multiple repetitions, these probabilities can be easily
upper and lower bounded. We use the following bounds. Let P ∗A(k, λ) the cheating probability
for Alice (resp. Bob) with a k-fold repetition of Berlin et al . ’s protocol with parameter λ. Let
P (k) = minλ(max{P ∗A(k, λ), P ∗B(k, λ). P (k) corresponds to the best cheating probability when
consider a k-fold repetition of the protocol. We need to lower bound P ∗A(k, λ). We have

P ∗A(k, λ) ≤ f(k, λ) =
1

2
+

1

2

(
1

2
+
√
λ(1− λ)

)k
This is a generalization of the upper bound we use to show that ε ≈ 0.359. Intuitively, this

corresponds to the case where Alice knows if Bob measured in the correct basis’ or not. When we
consider Alice’s cheating strategies where she uses separate (non entangled) strategies for each of
the k repetitions, we have the following lower bound.

P ∗A(k, λ) ≥ g(k, λ) = (
3

4
+

√
λ(1− λ)

2
)k

On the other hand, it possible to calculate exactly Bob’s cheating probability since

P ∗B(k, λ) = 1/2 +D(ρ⊗k0 , ρ⊗k1 )/2

Using these bounds, we get the following diagram for cheating probabilities of Alice and Bob which
shows that the optimal value is achieved using a 2-fold repetition of the protocol. The x-axis corre-
sponds to the number of repetition k. The y-axis corresponds to the minimal cheating probability
P (k) when using lower/upper bounds for P ∗A.
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7 Conclusion and open questions

In this work, we presented a loss-tolerant quantum coin flipping protocol with bias ε ≈ 0.359. To
do this, we presented a general method to disallow cheating Bob to take advantage of the fact that
he can reset the protocol when one of his measurement fails. It would be interesting to see whether
such techniques can be used for other protocols which have information theoretic security or not.
Moreover, what is the best bias that can be achieved for such loss-tolerant protocols and can such
protocols also be noise-tolerant?
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