
ar
X

iv
:1

00
7.

18
75

v1
  [

qu
an

t-
ph

] 
 1

2 
Ju

l 2
01

0

Lower Bounds for Quantum Oblivious Transfer

André Chailloux∗

LRI

Université Paris-Sud
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Abstract

Oblivious transfer is a fundamental primitive in cryptography. While perfect in-
formation theoretic security is impossible, quantum oblivious transfer protocols can
limit the dishonest players’ cheating. Finding the optimal security parameters in such
protocols is an important open question. In this paper we show that every 1-out-of-2
oblivious transfer protocol allows a dishonest party to cheat with probability bounded
below by a constant strictly larger than 1/2. Alice’s cheating is defined as her prob-
ability of guessing Bob’s index, and Bob’s cheating is defined as his probability of
guessing both input bits of Alice. In our proof, we relate these cheating probabilities
to the cheating probabilities of a coin flipping protocol and conclude by using Kitaev’s
coin flipping lower bound. Then, we present an oblivious transfer protocol with two
messages and cheating probabilities at most 3/4. Last, we extend Kitaev’s semidefinite
programming formulation to more general primitives, where the security is against a
dishonest player trying to force the outcome of the other player, and prove optimal
lower and upper bounds for them.

1 Introduction

Quantum information enables us to do cryptography with information theoretic security.
The first breakthrough result in quantum cryptography is the unconditionally secure key
distribution protocol of Bennett and Brassard [BB84]. Since then, a long series of work has
studied which other cryptographic primitives are possible in the quantum world. However,
the subsequent results were negative. Mayers and Lo, Chau proved the impossibility of
secure ideal quantum bit commitment and oblivious transfer and consequently of any type
of two-party secure computation [May97, LC97, DKSW07]. On the other hand, several
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imperfect variants of these primitives have been shown to be possible. Finding the optimal
parameters for such fundamental primitives has been since an important open question.
The reason for looking at these abstract primitives is that they are the basis for all cryp-
tographic protocols one may wish to construct, including identification schemes, digital
signatures, electronic voting, etc. Let us emphasize that in this paper we only look at
information theoretic security and we do not discuss computational security or security in
restricted models like the bounded-storage or noisy-storage model.

We start with coin flipping, which was first proposed by Blum [Blu81] and has since
found numerous applications in two-party secure computation. Even though the results
of Mayers and of Lo and Chau exclude the possibility of perfect quantum coin flipping,
i.e., where the resulting coin is perfectly unbiased, it still remained open whether one
can construct a quantum protocol where no player could bias the coin with probability
1. Aharonov et al. [ATVY00] provided such a protocol where no dishonest player could
bias the coin with probability higher than 0.9143. Then, Ambainis [Amb01] described an
improved protocol whose cheating probability was at most 3/4. Subsequently, a number of
different protocols had been proposed [SR01, NS03, KN04] that achieved the same bound
of 3/4.

On the other hand, Kitaev [Kit03], using a formulation of quantum coin flipping as
semidefinite programs proved a lower bound of 1/2 on the product of the cheating prob-
abilities for Alice and Bob (see [ABDR04]). In other words, no quantum coin flipping
protocol can achieve a cheating probability less than 1/

√
2 for both Alice and Bob.

The question of whether 3/4 or 1/
√
2 was the right answer has recently been resolved

by Chailloux and Kerenidis [CK09] who described a protocol with cheating probability
arbitrarily close to 1/

√
2. In their protocol they use as a subroutine a weaker variant of

coin flipping which is referred to as weak coin flipping.
Weak coin flipping protocols with cheating probabilities less than 3/4 were first con-

structed in [SR02, Amb02, KN04]. The best bound was in fact 1/
√
2 until the breakthrough

result by Mochon who described a protocol with cheating probability 2/3 [Moc05] and then
a protocol that achieves a cheating probability of 1/2 + ǫ for any ǫ > 0 [Moc07]. Hence
the optimal biases for weak and strong coin flipping are now known.

The question is still unresolved for quantum bit commitment. On one hand, a bit
commitment protocol implies a coin flipping protocol with the same parameters. In fact,
most of the known strong coin flipping protocols are of this form: Alice first quantumly
commits to a bit a. Then, Bob announces a bit b. Last, Alice reveals bit a and the result
of the coin flip is c = a ⊕ b. Hence, Kitaev’s lower bound states that no quantum bit
commitment protocol can achieve cheating probabilities lower than 1/

√
2. On the other

hand, the best protocols we know achieve a value of 3/4. In fact, the only strong coin
flipping protocol that achieves a value better than 3/4 is the optimal protocol of Chailloux-
Kerenidis, which is not based on a quantum bit commitment scheme, but on Mochon’s weak
coin flipping protocol. Hence, the question of the optimal bias for quantum bit commitment
remains open.
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In this paper, we focus on oblivious transfer, which is a universal primitive for any two-
party secure computation [Rab81, EGL82, Cré87]. We define a 1-out-of-2 random oblivious
transfer protocol with bias ε, denoted here as random-OT , to be a protocol where:

• Alice outputs two uniformly random bits (x0, x1)

• Bob outputs xb for a uniformly random choice of b

• AOT := sup{Pr[Alice guesses b and Bob does not abort ]} = 1
2 + εA

• BOT := sup{Pr[Bob guesses (x0, x1) and Alice does not abort ]} = 1
2 + εB

• The bias of the protocol is defined as ǫ := max{ǫA, ǫB}

where the suprema are taken over all strategies for Alice and Bob respectively. Note that in
our definition, the bias is not defined just as an upper bound on the cheating probabilities
but corresponds to the optimal cheating probability.

We note here that an honest Bob can learn both bits with probability 1/2, since he can
learn one bit prefectly and can make a random guess for the other bit.

There is also another variant, denoted as OT , where Alice and Bob have specific values
of (x0, x1) and b as inputs. We show that the two notions are equivalent with respect to ε.

The first impossibility result for quantum OT with information theoretic security was
shown by Lo [Lo97]. The main idea is that if Alice has no information about Bob’s index
b then Bob can learn both bits in the following way: first, Bob honestly runs the protocol
with b = 0 to learn x0 with probability 1; then he locally applies a unitary to his part of the
joint final state in order to transform the joint state to the joint final state in the case of
b = 1 and hence learn x1. Since, Bob can learn each bit with probability 1, his measurement
does not change the state and hence he can perform both of them sequentially.

However, not much was known about the best possible bias that one can get for OT . In
high level, OT is the “strongest” primitive, since it implies bit commitment, coin flipping,
and in fact any two-party functionality. However, when one looks at the optimal constant
values for the bias, then one needs to be more careful. For example, the standard way of
constructing a bit commitment protocol from OT is the following: Alice and Bob perform
OT with inputs x0, x1, where x0 ⊕ x1 is the committed bit. Since, Bob can learn only one
of the two inputs, he has no information about the committed bit. On the other hand, in
the reveal phase, Alice reveals both bits, and since she has no information about which one
Bob has learnt, if she wants to change her mind without getting caught, she can only do
it with probability 1/2 (hence her cheating probability is 3/4). Classically, one can then
repeat this protocol many times in order to take this probability close to 1/2. As we can
see, a perfect OT protocol does not automatically give a perfect bit commitment protocol,
as there is a loss in the parameters. Hence, Kitaev’s lower bound does not a priori hold for
OT , since we do not know how to easily convert an OT protocol to a coin flipping protocol
without any loss.
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Let us also note that in the quantum setting, one can use a large number of bit com-
mitment protocols in order to construct an OT protocol, something which is not known to
be possible classically ([Yao95],[BF10]).

In related work, Salvail, Schaffner and Sotakova [SSS09] have quantitatively studied a
different notion of security for OT protocols (and generally any two-party protocols) that
they call information leakage. Information leakage is defined as the maximum amount of
extra information about the other party’s output given the quantum state held by one
party. They prove, among other results, that any 1-out-of-2 OT protocol has a constant
leakage. Their model is somewhat different, for example they do not allow the players
to abort during the protocol, and their security notion is described in terms of mutual
information and entropy and does not immediately translate to our security notion of
guessing probabilities. However, their results provide more evidence that almost-perfect
OT protocols are impossible for different variants of security.

In another work, Jain, Radhakrishnan and Sen [JRS02] showed that in a 1-out-of-n OT
protocol, if Alice gets t bits of information about Bob’s index b, then Bob gets at least
Ω(n/2O(t)) bits of information about Alice’s string x.

In this paper, we quantitatively study the bias of quantum oblivious transfer protocols.
More precisely, we construct a coin flipping protocol that uses OT as a subroutine and
show a relation between the cheating probabilities of the OT protocol and the ones of the
coin flipping protocol. Then, using Kitaev’s lower bound for coin flipping we derive a non-
trivial lower bound (albeit weaker) on the cheating probabilities for OT . More precisely
we prove the following theorem.

Theorem 1 In any quantum oblivious transfer protocol, we have

AOT · f(BOT ) ≥ 1/2

where f is a function that we define later. This implies for the bias ǫ of the protocol that

ǫ ≥ 1

2

(

√

1

2
+ 2

√
2−

√

1

2

)

− 1

2
≈ 0.0586.

Moreover, in Section 4 we describe a simple 1-out-of-2 random-OT protocol and analyze
the cheating probabilities of Alice and Bob.

Theorem 2 There exists a quantum oblivious transfer protocol such that AOT = BOT = 3
4 .

One may wonder if it would be possible to extend Kitaev’s semidefinite programming
formulation to include the OT primitive and get a stronger lower bound this way. In fact,
in Section 5 we describe a generalisation of Kitaev’s semidefinite program that captures
a variant of the general k-out-of-n OT primitive. Coin flipping, is then the special case
of 1-out-of-1 OT . However, there is a big difference. What the semidefinite program
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formulation captures is the probability that one player can force the outcome of the other
one.

More precisely, we define a k-out-of-n forcing oblivious transfer protocol, denoted here
as
(

n
k

)

-fOT, with forcing bias ε as a protocol satisfying:

• Alice outputs n random bits x := (x1, . . . , xn)

• Bob outputs a random index set b of k indices and bit string xb consisting of xi for
i ∈ b

• Ab,xb
:= sup{Pr[Alice can force Bob to output (b, xb)]} =

εA
(

n
k

)

· 2k

• Bx := sup{Pr[Bob can force Alice to output x]} =
εB
2n

• The forcing bias of the protocol is defined as ǫ := max{ǫA, ǫB}

where, again, the suprema are over all strategies of Alice and Bob respectively. First, notice
our definition of the bias ε as a multiplicative factor instead of additive. We choose this
since the honest probabilities of the two players can be very different and in this case our
definition makes more sense.

More importantly, this ‘forcing’ security definition is exactly what is needed in coin
flipping, since there, Alice and Bob know each others outputs and the only cheating is
forcing the other player’s output in order to get a specific value for the coin. However, this
is very different than the probability that one player can guess the outcome of the other
player, which is the security guarantee we wish for in an OT protocol.

Nevertheless, it is still interesting to know how one can extend Kitaev’s semidefinite
programming formulation, what are the most general primitives that can be described in
this framework, and what are their applications. For these k-out-of-n “forcing” primitives
we provide optimal upper and lower bounds.

Theorem 3 In any
(n
k

)

-fOT protocol and consistent b, x, xb we have

Bx · Ab,xb
≥ Pr[Alice honestly outputs x and Bob honestly outputs (b, xb)] =

1
(

n
k

)

2n
.

In particular, the forcing bias satisfies ε ≥
√
2
k
.

Note that for the special case of coin flipping, or else
(1
1

)

-fOT, our bounds are tight (a

multiplicative bias of
√
2 is equivalent to a cheating probability of 1√

2
).

Similar to coin flipping, one can get optimal protocols as well for
(n
k

)

-fOT.
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Theorem 4 Let γ > 0. There exists a protocol for
(n
k

)

-fOT with cheating probabilities:

Ab,xb
≤

√
2
k
(1 + γ)

(n
k

)

· 2k and Bx ≤
√
2
k
(1 + γ)

2n

for consistent b, x, xb.

2 Preliminaries

2.1 Definitions of Primitives

We assume the reader is familiar with the basic notions of quantum computing. All used
notions can be found in [NC00].

In the literature, many different variants of oblivious transfer have been considered. In
this paper, we consider two variants of quantum oblivious transfer and for completeness
we show that they are equivalent with respect to the bias ǫ.

Definition 1 (Random Oblivious Transfer) A 1-out-of-2 quantum random oblivious
transfer protocol with bias ǫ, denoted here as random-OT , is a protocol between Alice and
Bob such that:

• Alice outputs two bits (x0, x1) or Abort and Bob outputs two bits (b, y) or Abort

• If Alice and Bob are honest, they never Abort, y = xb, Alice has no information about
b and Bob has no information about xb. Also, x0, x1, b are uniformly random bits.

• AOT := sup{Pr[Alice guesses b and Bob does not Abort]} = 1
2 + ǫA

• BOT := sup{Pr[Bob guesses (x0, x1) and Alice does not Abort]} = 1
2 + ǫB

• The bias of the protocol is defined as ǫ := max{ǫA, ǫB}
where the suprema are taken over all cheating strategies for Alice and Bob.

Note that this definition is slightly different from usual definitions because we want the
exact value of the cheating probabilities and not only an upper bound. This is because
we consider both lower bounds and upper bounds for OT protocols but we could have
equivalent results using the standard definitions.

An important issue is that we quantify the security against a cheating Bob as the
probability that he can guess (x0, x1). One can imagine a security definition where Bob’s
guessing probability is not for (x0, x1), but for example for x0 ⊕ x1 or any other function
f(x0, x1). Since we are mostly interested in lower bounds, we believe our definition is
the most appropriate one, since a lower bound on the probability of guessing (x0, x1)
automatically yields a lower bound on the probability of guessing any f(x0, x1).

We now define a second notion of OT where the values (x0, x1) and b are Alice’s and
Bob’s inputs respectively and show the equivalence between the two notions.
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Definition 2 (Oblivious Transfer) A 1-out-of-2 quantum oblivious transfer protocol with
bias ǫ, denoted here as OT , is a protocol between Alice and Bob such that:

• Alice has input x0, x1 ∈ {0, 1} and Bob has input b ∈ {0, 1}. At the beginning of the
protocol, Alice has no information about b and Bob has no information about (x0, x1)

• At the end of the protocol, Bob outputs y or Abort and Alice can either Abort or not

• If Alice and Bob are honest, they never Abort, y = xb, Alice has no information about
b and Bob has no information about xb

• AOT := sup{Pr[Alice guesses b and Bob does not Abort]} = 1
2 + ǫA

• BOT := sup{Pr[Bob guesses (x0, x1) and Alice does not Abort]} = 1
2 + ǫB

• The bias of the protocol is defined as ǫ := max{ǫA, ǫB}

where the suprema are taken over all cheating strategies for Alice and Bob.

We also define quantum (strong) coin flipping.

Definition 3 A quantum coin flipping protocol with bias ǫ, denoted here as CF , is a
protocol between Alice and Bob who agree on an output a ∈ {0, 1,Abort} such that:

• If Alice and Bob are honest then Pr[a = 0] = Pr[a = 1] = 1
2

• ACF := sup{max{Pr[a = 0],Pr[a = 1]}} = 1
2 + ǫA

• BCF := sup{max{Pr[a = 0],Pr[a = 1]}} = 1
2 + ǫB

• The bias of the protocol is defined as ǫ := max{ǫA, ǫB}

where the suprema are taken over all strategies for Alice and Bob.

2.2 Equivalence between the different notions of Oblivious Transfer

We show the equivalence between OT and random-OT with respect to the bias ǫ.

Proposition 1 Let P an OT protocol with bias ǫ. We can construct a random-OT protocol
Q with bias ǫ using P .

Proof The construction of the OT protocol Q is pretty straightforward:

1. Alice picks x0, x1 ∈R {0, 1} uniformly at random and Bob picks b ∈R {0, 1} uniformly
at random.
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2. Alice and Bob perform the OT protocol P where Alice inputs x0, x1 and Bob inputs
b. Let y be Bob’s output. Note that at this point, Alice has no information about b
and Bob has no information about (x0, x1).

3. Alice and Bob abort in Q if and only if they abort in P . Otherwise, the outputs of
protocol Q are (x0, x1) for Alice and (b, y) for Bob.

The outcomes of Q are uniformly random bits since Alice and Bob choose their inputs
uniformly at random. All the other requirements that make Q an OT protocol with bias
ǫ are satisfied because P is an OT protocol with bias ǫ.

We now prove how to go from a random-OT to an OT protocol.

Proposition 2 Let P a random-OT protocol with bias ǫP . We can construct an OT
protocol Q with bias ǫQ = ǫP using P .

Proof Let P a random-OT protocol with bias ǫP . Consider the following protocol Q:

1. Alice has inputs X0,X1 and Bob has an input B.

2. Alice and Bob run protocol P and output (x0, x1) for Alice and (b, y) for Bob.

3. Bob sends r = b⊕B to Alice. Let x′c = xc⊕r, for c ∈ {0, 1}.

4. Alice sends to Bob (s0, s1) where sc = x′c ⊕Xc for c ∈ {0, 1}. Let y′ = y ⊕ sB.

5. Alice and Bob abort in Q if and only if they abort in P . Otherwise, the output of
the protocol is y′ for Bob.

We now show that our protocol is an OT protocol with inputs with bias ǫ. First, note
that the values x′c are known by Alice and the value y′ is known by Bob. Also, notice that
x′B = xB⊕r = xb.

• Alice and Bob are honest:
By definition we have y = xb. Then, we have y′ = y ⊕ sB = xb ⊕ sB = x′B ⊕ sB =
XB . Moreover, Alice knows r but has no information about b and hence she has no
information about B = b⊕ r. Bob knows (s0, s1) and r but has no information about
xb̄, hence he has no information about XB̄ = x′

B̄
⊕ sB̄ = x′

b̄⊕r
⊕ sb̄⊕r = xb̄ ⊕ sb̄⊕r.

• Cheating Alice:
Alice picks r and B = b⊕ r. Hence

AOT (Q) = sup{Pr[Alice guesses B and Bob does not Abort]}
= sup{Pr[Alice guesses b and Bob does not Abort]} = AOT (P ).

8



• Cheating Bob: Bob picks a random r, sends r to Alice and then Alice picks (s0, s1).
We have Xc = x′c ⊕ sc = xc⊕r ⊕ sc so it is equivalent for Bob to guess (X0,X1) and
(x0, x1). Hence

BOT (Q) = sup{Pr[Bob guesses (X0,X1) and Alice does not Abort]}
= sup{Pr[Bob guesses (x0, x1) and Alice does not Abort]} = BOT (P ).

We can now conclude for the biases

ǫQ = max{AOT (Q), BOT (Q)} − 1

2
= max{AOT (P ), BOT (P )} −

1

2
= ǫP .

2.3 Technical Claims

Claim 1 ([DW09] following [Nay99]) Suppose we have a classical random variable X,
uniformly distributed over [n] = {1, . . . , n}. Let x → |φx〉 be some encoding of [n], where
|φx〉 is a pure state in a d-dimensional space. Let P1, . . . , Pn be the measurement operators
applied for decoding; these sum to the d-dimensional identity operator. Then the probability
of correctly decoding in case X = x is

px = ||Px|φx〉||2 ≤ Tr(Px).

The expected success probability is

1

n

n
∑

x=1

px ≤ 1

n

n
∑

x=1

Tr(Px) =
1

n
Tr

(

n
∑

x=1

Px

)

=
1

n
Tr(I) =

d

n
.

Claim 2 Let |X〉 be a pure state, Q a projection, and |Y 〉 a pure state such that Q|Y 〉 =
|Y 〉. Then we have

‖Q|X〉‖22 ≥ |〈X|Y 〉|2.

Proof Using Cauchy-Schwarz we have

|〈X|Y 〉|2 = |〈X|Q|Y 〉|2 ≤ ‖Q|X〉‖22 ‖|Y 〉‖22 = ‖Q|X〉‖22 .

�

Claim 3 Suppose θ, θ′ ∈ [0, π/4]. If |〈ψ|φ〉| ≥ cos(θ) and |〈φ|ξ〉| ≥ cos(θ′) then

|〈ψ|ξ〉| ≥ cos(θ + θ′).

Proof Define the angle between two pure states |ψ〉 and |φ〉 as A(ψ, φ) := arccos |〈ψ|φ〉|.
This is a metric (see [NC00] page 413). Thus we have

arccos |〈ψ|ξ〉| = A(ψ, ξ) ≤ A(ψ, φ) +A(φ, ξ) = arccos |〈ψ|φ〉| + arccos |〈φ|ξ〉| ≤ θ + θ′.

Taking the cosine of both sides yields the result. �
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Claim 4 Let θ, ρ ∈ [0, π/4]. Then

cos(θ + ρ) ≥ cos2(θ) + cos2(ρ)− 1.

Proof Wlog suppose that θ ≥ ρ. Consider the function

f(θ) = cos(θ + ρ)− cos2(θ) + sin2(ρ)

for fixed ρ. Taking its derivative we get

f ′(θ) = − sin(θ + ρ) + sin(2θ)

which is nonnegative for θ ∈ [ρ, π/4]. Since f(ρ) = 0, we conclude that f(θ) ≥ 0 for
θ ∈ [ρ, π/4] which gives the desired result. �

3 A Lower Bound on Any Oblivious Transfer Protocol

In this section we prove that the bias of any random-OT protocol, and hence any OT
protocol, is bounded below by a constant. We start from a random-OT protocol and first
show how to construct a coin flipping protocol. Then, we prove a relation between the
cheating probabilities of the coin flipping protocol and those in the random-OT protocol.
Last, we use Kitaev’s lower bound for coin flipping to derive a lower bound for any OT
protocol.

3.1 From Oblivious Transfer to Coin Flipping

Coin Flipping Protocol via random-OT

1. Alice and Bob perform the OT protocol to create (x0, x1) and (b, xb) respectively.
If the OT protocol is aborted then so is the coin flipping protocol.

2. Alice sends c ∈R {0, 1} to Bob.
3. Bob sends b and y = xb to Alice.
4. If xb from Bob is consistent with Alice’s bits then the output of the protocol is c⊕ b.
Otherwise Alice aborts.

By definition, AOT and BOT denote the optimal cheating probabilities for Alice and Bob
in the random-OT protocol and ACF and BCF denote the optimal cheating probabilities for
Alice and Bob in the coin flipping protocol. Kitaev’s lower bound says that ACFBCF ≥ 1/2.
We use this inequality to derive an inequality involving AOT and BOT .
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Theorem 1 In any quantum oblivious transfer protocol, we have

AOT · f(BOT ) ≥ 1/2

for the function f defined as1

f(z) =
1

6
(3
√
3
√

27z2 − 2z + 27z − 1)1/3 +
1

6
(3
√
3
√

27z2 − 2z + 27z − 1)−1/3 + 1/3.

This implies that the bias ǫ of the protocol satisfies

ǫ ≥ 1

2

(

√

1

2
+ 2

√
2−

√

1

2

)

− 1

2
≈ 0.0586.

In what follows we prove the above theorem.
Let ¬⊥CF

A (resp. ¬⊥CF
B ) denote the event “Alice (resp. Bob) does not abort during

the entire coin flipping protocol”. Let ¬⊥OT
A (resp. ¬⊥OT

B ) denote the event “Alice (resp.
Bob) does not abort during the random-OT subroutine”.

Cheating Alice By definition, AOT is the optimal probability of Alice guessing b in the
random-OT protocol without Bob aborting. Suppose Alice desires to force 0 in the coin
flipping protocol (a similar argument can be made if she wants 1). Bob must not abort and
Alice must send c = b in her last message. Notice also that in our coin flipping protocol,
Bob can abort only in the OT subroutine and hence ¬⊥OT

B ≡ ¬⊥CF
B . Thus,

ACF = sup{Pr[ (Alice sends c = b)∧¬⊥CF
B ]} = sup{Pr[ (Alice guesses b)∧¬⊥OT

B ]} = AOT .

where the suprema are taken over all possible strategies for Alice.

Cheating Bob By definition, BOT is the optimal probability of Bob learning both bits
in the random-OT protocol without Alice aborting. Thus,

BOT = sup{Pr[ (Bob guesses (x0, x1)) ∧ ¬⊥OT
A ]}

= sup{Pr[¬⊥OT
A ] · Pr[ (Bob guesses (x0, x1))|¬⊥OT

A ]}.

where the suprema are taken over all strategies for Bob.
If Bob wants to force 0 in the coin flipping protocol (a similar argument works if he

wants to force 1), then first, Alice must not abort in the random-OT protocol and second,
Bob must send b = c as well as the correct xc such that Alice does not abort in the last
round of the coin flipping protocol. This is equivalent to saying that Bob succeeds if he
guesses xc and Alice does not abort in the random-OT protocol. Since c is chosen by Alice
uniformly at random, we can write the probability of Bob cheating as

1f is the inverse function of g(x) = x(2x− 1)2 on some domain, see the proof for more details.
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BCF = max

{

1

2
Pr[(Bob guesses x0) ∧ ¬⊥OT

A ] +
1

2
Pr[(Bob guesses x1) ∧ ¬⊥OT

A ]

}

= max

{

Pr[¬⊥OT
A ] ·

(

1

2
Pr[(Bob guesses x0)|¬⊥OT

A ] +
1

2
Pr[(Bob guesses x1)|¬⊥OT

A ]

)}

.

Notice that we use “max” instead of “sup” above. This is because an optimal strategy
exists for every coin flipping protocol. This is a consequence of strong duality in the
semidefinite programming formalism of [Kit03], see [ABDR04] for details.

Let us now fix Bob’s optimal cheating strategy in the CF protocol. For this strategy, let
p = Pr[(Bob guesses x0)|¬⊥OT

A ], q = Pr[(Bob guesses x1)|¬⊥OT
A ] and a = p+q

2 . Note that
wlog, we can assume that Bob’s measurements are projective measurements. This can be
done by increasing the dimension of Bob’s space. Also, Alice has a projective measurement
on her space to determine the bits (x0, x1).

We use the following lemma to relate BCF and BOT .

Lemma 1 (Learning-In-Sequence Lemma) Let p, q ∈ [1/2, 1]. Let Alice and Bob
share a joint pure state. Suppose Alice performs on her space a projective measurement
M = {Mx0,x1

}x0,x1∈{0,1}to determine the values of (x0, x1). Suppose there is a projective
measurement P = {P0, P1} on Bob’s space that allows him to guess bit x0 with probability
p and a projective measurement Q = {Q0, Q1} on his space that allows him to guess bit
x1 with probability q. Then, there exists a measurement on Bob’s space that allows him to
guess (x0, x1) with probability at least a(2a− 1)2 where a = p+q

2 .

We postpone the proof of this lemma to Subsection 3.2.
We now construct a cheating strategy for Bob for the OT protocol: Run the optimal

cheating CF strategy and look at Bob’s state after step 1 conditioned on ¬⊥OT
A . Note

that this event happens with nonzero probability in the optimal coin flipping strategy
since otherwise the success probability is 0. The optimal CF strategy gives measurements
that allow Bob to guess x0 with probability p and x1 with probability q. Bob uses these
measurements and the procedure of Lemma 1 to guess (x0, x1). Let b be the probability
he guesses (x0, x1). From Lemma 1, we have that b ≥ a(2a − 1)2. By definition of BOT

and BCF , we have:

b = Pr[ (Bob guesses (x0, x1))|¬⊥OT
A ] ≤ BOT

Pr[¬⊥OT
A ]

and a =
BCF

Pr[¬⊥OT
A ]

.

This gives us

BOT

Pr[¬⊥OT
A ]

≥ BCF

Pr[¬⊥OT
A ]

(

2
BCF

Pr[¬⊥OT
A ]

− 1

)2

=⇒ BOT ≥ BCF (2BCF − 1)2 ,

12



where the implication holds since BCF ≥ 1/2.
We now calculate an upper bound on BCF as a function of BOT . Let g(x) = x(2x−1)2.

It can be easily checked that g is bijective from [0.5, 1] to [0, 1] and increasing. Let f be
the inverse function of g from [0, 1] to [0, 0.5]. Since g is increasing, f is also increasing.
Hence, since BOT ≥ g(BCF ) and BCF ∈ [0.5, 1], we conclude that

BCF ≤ f(BOT ).

We can write f analytically using computer software to get the following function

f(z) =
1

6
(3
√
3
√

27z2 − 2z + 27z − 1)1/3 +
1

6
(3
√
3
√

27z2 − 2z + 27z − 1)−1/3 + 1/3.

Kitaev’s lower bound states that ACFBCF ≥ 1/2. From this, we have

AOT f(BOT ) ≥ ACFBCF ≥ 1/2.

We now proceed to give the lower bound for the bias. Since f is increasing, we have

(ε+ 1/2) · f(ε+ 1/2) ≥ AOT f(BOT ) ≥ ACFBCF ≥ 1/2.

Solving the inequality we show that ε must satisfy

ε ≥ 1

2

(

√

1

2
+ 2

√
2−

√

1

2

)

− 1

2
≈ 0.0586.

�

3.2 Proof of the Learning-In-Sequence Lemma

The Learning-in-Sequence Lemma follows from the following simple geometric result.

Lemma 2 Let |ψ〉 be a pure state and let {C, I − C} and {D, I − D} be two projective
measurements such that

cos2(θ) := ‖C|ψ〉‖22 ≥
1

2
and cos2(θ′) := ‖D|ψ〉‖22 ≥

1

2
.

Then we have
‖DC|ψ〉‖22 ≥ cos2(θ) cos2(θ + θ′).

Proof Define the following states

|X〉 := C|ψ〉
‖C|ψ〉‖2

, |X ′〉 := (I − C)|ψ〉
‖(I − C)|ψ〉‖2

, |Y 〉 := D|ψ〉
‖D|ψ〉‖2

, |Y ′〉 := (I −D)|ψ〉
‖(I −D)|ψ〉‖2

.

13



Then we can write |ψ〉 = cos(θ)|X〉+ eiα sin(θ)|X ′〉 and |ψ〉 = cos(θ′)|Y 〉+ eiβ sin(θ′)|Y ′〉
with α, β ∈ R. Then we have

‖DC|ψ〉‖22 = cos2(θ) ‖D|X〉‖22
≥ cos2(θ)|〈Y |X〉|2 using Claim 2

≥ cos2(θ) cos2(θ + θ′) using Claim 3. �

�

We now prove Lemma 1.

Proof Let |Ω〉AB be the joint pure state shared by Alice and Bob, where A is the space
controlled by Alice and B the space controlled by Bob.

Let M = {Mx0,x1
}x0,x1∈{0,1} be Alice’s projective measurement on A to determine her

outputs x0, x1. Let P = {P0, P1} be Bob’s projective measurement that allows him to
guess x0 with probability p = cos2(θ) and Q = {Q0, Q1} be Bob’s projective measurement
that allows him to guess x1 with probability q = cos2(θ′). These measurements are on B
only. Recall that a = p+q

2 = cos2(θ)+cos2(θ′)
2 . We consider the following projections on AB:

C =
∑

x0,x1

Mx0,x1
⊗ Px0

and D =
∑

x0,x1

Mx0,x1
⊗Qx1

.

C (resp. D) is the projection on the subspace where Bob guesses correctly the first bit
(resp. the second bit) after applying P (resp. Q).

A strategy for Bob to learn both bits is simple: apply the two measurements P and Q
one after the other, where the first one is chosen uniformly at random.

The projection on the subspace where Bob guesses (x0, x1) when applying P then Q is

E =
∑

x0,x1

Mx0,x1
⊗Qx1

Px0
= DC.

Similarly, the projection on the subspace where Bob guesses (x0, x1) when applying Q then
P is

F =
∑

x0,x1

Mx0,x1
⊗ Px0

Qx1
= CD.

With this strategy Bob can guess both bits with probability

1

2

(

||E|Ω〉||22 + ||F |Ω〉||22
)

=
1

2

(

||DC|Ω〉||22 + ||CD|Ω〉||22
)

≥ 1

2

(

cos2(θ) + cos2(θ′)
)

cos2(θ + θ′) using Lemma 2

≥ 1

2

(

cos2(θ) + cos2(θ′)
) (

cos2(θ) + cos2(θ′)− 1
)2

using Claim 4

= a(2a− 1)2.

14



Note that we can use Lemma 2 since Bob’s optimal measurement to guess x0 and x1
succeeds for each bit with probability at least 1/2. �

4 A Two-Message Protocol With Bias 1/4

We present in this section a random-OT protocol with bias 1/4. This also implies, as we
have shown, an OT protocol with inputs with the same bias.

Random Oblivious Transfer Protocol

1. Bob chooses b ∈R {0, 1} and creates the state |φb〉 := 1√
2
|bb〉+ 1√

2
|22〉.

2. Alice chooses x0, x1 ∈R {0, 1} and applies the unitary |a〉 → (−1)xa |a〉,
where x2 := 0.

3. Alice returns the qutrit to Bob who now has the state |ψb〉 := (−1)xb√
2

|bb〉+ 1√
2
|22〉.

4. Bob performs on the state |ψb〉 the measurement {Π0 = |φb〉〈φb|,Π1 := |φ′b〉〈φ′b|,
I −Π0 −Π1}, where |φ′b〉 := 1√

2
|bb〉 − 1√

2
|22〉.

If the outcome is Π0 then xb = 0, if it is Π1 then xb = 1, otherwise he aborts.

It is clear that Bob can learn x0 or x1 perfectly. Moreover, note that if he sends half of
the state 1√

2
|00〉+ 1√

2
|11〉 then he can also learn x0⊕x1 perfectly (although in this case he

does not learn either of x0 or x1). We now show that it is impossible for him to perfectly
learn both x0 and x1 and also that his bit is not completely revealed to a cheating Alice.

Theorem 2 In the protocol described above, we have AOT = BOT = 3
4 .

Proof We analyze the cheating probabilities of each party.

Cheating Alice
Define Bob’s space as B and let σb := TrB(|φb〉〈φb|) denote the two reduced states

Alice may receive in the first message. Then, the optimal strategy for Alice to learn b is
to perform the optimal measurement to distinguish between σ0 and σ1. In this case, she
succeeds with probability

1

2
+

1

4
‖σ0 − σ1‖tr =

3

4
,

(see for example [KN04]). Alice’s optimal measurement is, in fact, a measurement in the
computational basis. If she gets outcome |0〉 or |1〉 then she knows b with certainty. If she
gets outcome |2〉 then she guesses. Notice also, that even after this measurement she can
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return the measured qutrit to Bob and the outcome of Bob’s measurement will always be
either Π0 or Π1. Hence, Bob will never abort.

Cheating Bob
Bob wants to learn both bits (x0, x1). We now describe a general strategy for Bob:

• Bob creates |ψ〉 =
∑

i αi|i〉A|ei〉B and sends the A part to Alice. The |ei〉’s are not
necessarily orthogonal but

∑

i |αi|2 = 1.

• Alice applies Ux0,x1
on her part and sends it back to Bob. He now has the state

|ψx0,x1
〉 =∑i αi(−1)xi |i〉|ei〉 recalling that x2 := 0.

At the end of the protocol, Bob applies a two-outcome measurement on |ψx0,x1
〉 to get his

guess for (x0, x1).
From this strategy, we create another strategy with the same cheating probability where

Bob sends a pure state. We define this strategy as follows:

• Bob creates |ψ′〉 =∑i αi|i〉A and sends the whole state to Alice.

• Alice applies Ux0,x1
on her part and sends it back to Bob. He now has the state

|ψ′
x0,x1

〉 =∑i αi(−1)xi |i〉 recalling that x2 := 0.

• Bob applies the unitary U : |i〉|0〉 → |i〉|ei〉 to |ψ′
x0,x1

〉|0〉 and obtains |ψx0,x1
〉.

To determine (x0, x1), Bob applies the same measurement as in the original strategy.
Clearly both strategies have the same success probability. When Bob uses the second

strategy, Alice and Bob are unentangled after the first message and Alice sends back a
qutrit to Bob. Using Claim 1, we have

Pr[Bob correctly guesses (x0, x1)] ≤ 3/4.

Note that there is a strategy for Bob to achieve 3/4. Bob wants to learn both bits
(x0, x1). Suppose he creates the state

|ψ〉 := 1√
3
|0〉+ 1√

3
|1〉 + 1√

3
|2〉

and sends it to Alice. The state he receives is

|ψx0,x1
〉 := 1√

3
(−1)x0 |0〉+ 1√

3
(−1)x1 |1〉+ 1√

3
|2〉.

Then, Bob performs a projective measurement in the 4-dimensional basis {|Ψx0,x1
〉 :

x0, x1 ∈ {0, 1}} where

|Ψx0,x1
〉 := 1

2
(−1)x0 |0〉+ 1

2
(−1)x1 |1〉+ 1

2
|2〉 + 1

2
(−1)x0⊕x1 |3〉.
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The probability that Bob guesses the two bits x0, x1 correctly is

∑

x0,x1

1

4
Pr[Bob guesses (x0, x1)] =

∑

x0,x1

1

4
|〈Ψx0,x1

|ψx0,x1
〉|2 = 3

4
.

Note that in our protocol Alice never aborts.

5 Oblivious Transfer as a Forcing Primitive

Here, we discuss a variant of oblivious transfer, as a generalisation of coin flipping, that
can be analyzed using an extention of Kitaev’s semidefinite programming formalism.

Definition 4 (Forcing Oblivious Transfer) A k-out-of-n forcing oblivious transfer pro-
tocol, denoted here as

(n
k

)

-fOT, with forcing bias ε is a protocol satisfying:

• Alice outputs n random bits x := (x1, . . . , xn)

• Bob outputs a random index set b of k indices and bit string xb consisting of xi for
i ∈ b

• Ab,xb
:= sup{Pr[Alice can force Bob to output (b, xb)]} =

εA
(n
k

)

· 2k

• Bx := sup{Pr[Bob can force Alice to output x]} =
εB
2n

• The forcing bias of the protocol is defined as ǫ = max{ǫA, ǫB}
where the suprema are taken over all strategies of Alice and Bob.

The main difference in this new primitive is the definition of security. Here, we design
protocols to protect against a dishonest party being able to force a desired value as the
output of the other player. In the previous section (and in the literature) oblivious transfer
protocols are designed to protect against the dishonest party learning the other party’s
output. Notice, for example, that in coin flipping we can design protocols to protect against
a dishonest party forcing a desired outcome, but both players learn the coin outcome
perfectly.

The primitive we have defined is indeed a generalization of coin flipping since we can
cast the problem of coin flipping as a 1-out-of-1 forcing oblivious transfer protocol. Of
course, in

(1
1

)

-fOT Alice always knows Bob’s index set so the forcing bias is the only
interesting notion of security in this case.

As we said, we define the bias ε as a multiplicative factor instead of additive, since the
honest probabilities can be much different and in this case our definition makes more sense.
To relate this bias to the one previously studied in coin flipping we have that coin flipping
protocols with bias ε ≤

√
2 + δ exist for any δ > 0, see [CK09], and weak coin flipping

protocols with bias ε ≤ 1 + δ exist for any δ > 0, see [Moc07].
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5.1 Extending Kitaev’s Lower Bound to Forcing Oblivious Transfer

We now extend Kitaev’s formalism from the setting of coin flipping to the more general
setting of

(

n
k

)

-fOT.
Suppose Alice and Bob have private spaces A and B, respectively, and both have access

to a message spaceM each initialized in state |0〉. Then, we can define anm-round
(n
k

)

-fOT
protocol using the following parameters:

• Alice’s unitary operators UA,1, . . . , UA,m which act on A⊗M

• Bob’s unitary operators UB,1, . . . , UB,m which act on M⊗B

• Alice’s POVM {ΠA,abort} ∪ {ΠA,x : x ∈ Z
n
2} acting on A, one for each outcome

• Bob’s POVM {ΠB,abort}∪
{

ΠB,(b,xb) : b a k-element subset of n indices, xb ∈ Z
k
2

}

act-
ing on B, one for each outcome

We now show the criteria for which the parameters above yield a proper
(n
k

)

-fOT protocol.
In a proper protocol we require that Alice and Bob’s measurements are consistent and that
the outcomes are uniformly random when the protocol is followed honestly. Define

|ψ〉 := (IA ⊗ UB,m)(UA,m ⊗ IB) · · · (IA ⊗ UB,1)(UA,1 ⊗ IB)|0〉A⊗M⊗B

to be the state at the end of an honest run of the protocol. Then, we require the unitary
and measurement operators to satisfy the following condition:

∥

∥(ΠA,x ⊗ IM ⊗ΠB,(b,xb))|ψ〉
∥

∥

2

2
=

1
(n
k

)

2n
for (x, b, xb) consistent.

Similar to coin flipping, we can capture cheating strategies as semidefinite programs.
Bob can force Alice to output a specific x ∈ Z

n
2 with maximum probability equal to the

optimal value of the following semidefinite program

Bx = max 〈ΠA,x ⊗ IM, ρA,N 〉
subject to TrM(ρA,0) = |0〉〈0|A

TrM(ρA,j) = TrM(UA,jρA,j−1U
∗
A,j), for j ∈ {1, . . . , N}

ρA,0, . . . , ρA,N ∈ Pos(A⊗M), for j ∈ {0, . . . , N}

where Pos(H) is the set of positive semidefinite matrices over the Hilbert space H. The
states ρi represent the part of the state under Alice’s control after Bob sends his i’th
message. The constraints above are necessary since Bob cannot apply a unitary on A.
They are also sufficient since Bob can maintain a purification during the protocol consistent
with the states above to achieve a cheating probability given by the corresponding objective
value.
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To capture Alice’s cheating strategies we can do the same as for the cheating Bob and
examine the states under Bob’s control during the course of the protocol. That is, Alice can
force Bob to output a specific k-element subset b and xb ∈ Z

k
2 with maximum probability

equal to the optimal value of the following semidefinite program

Ab,xb
= max 〈IM ⊗ΠB,(b,xb), ρB,N 〉

subject to TrM(ρB,0) = |0〉〈0|B
TrM(ρB,j) = TrM(UB,jρB,j−1U

∗
B,j), for j ∈ {1, . . . , N}

ρB,0, . . . , ρB,N ∈ Pos(M⊗B), for j ∈ {0, . . . , N}

The proofs that these capture the optimal cheating probabilities are the same as those
used for coin flipping in [Kit03] and [ABDR04]. Using these semidefinite programs we can
prove the following Theorem.

Theorem 3 In any
(n
k

)

-fOT protocol and consistent b, x, xb we have

Bx · Ab,xb
≥ Pr[Alice honestly outputs x and Bob honestly outputs (b, xb)] =

1
(

n
k

)

2n
.

In particular, the forcing bias satisfies ε ≥
√
2
k
.

Once we extended the semidefinite programming formulation, the proof of the theorem
follows almost directly from the proof in [Kit03] and [ABDR04] for coin flipping except
that the honest outcome probabilities are different in our case. Namely, for |ψ〉 defined
above, we have

∥

∥(ΠA,x ⊗ IM ⊗ΠB,(b,xb))|ψ〉
∥

∥

2

2
=

1
(n
k

)

2n

when x, b, and xb are consistent and 0 otherwise.

5.2 A Protocol with Optimal Forcing Bias

In this section we prove Theorem 4. First, consider the following protocol which achieves
the bound in Theorem 3 but is asymmetric. Alice sends n random bits to Bob. Bob, then,
outputs b, a random k-index subset of n indices, and xb. In this protocol Bob can force a
desired outcome with probability 1

2n and Alice can force a desired outcome with probability
1

(n
k
)
. Thus the product of the cheating probabilities is optimal, that is it achieves the lower

bound in Theorem 3. However the protocol is asymmetric. This can be easily remedied
using coin flipping. We present an optimal protocol with this security definition.
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An Optimal
(n
k

)

-fOT Protocol with Forcing Bias
√
2
k

1. Bob outputs a random index set b of k indices and sends the result to Alice.

2. Alice and Bob play a coin flipping game with bias
√
2 + δ

(for a δ > 0 sufficiently small) to determine each bit in xb.
3. Alice randomly chooses her bits not in b.

Theorem 4 For any γ > 0 we can choose a δ > 0 such that the
(

n
k

)

-fOT protocol above
satisfies for consistent b, x, xb

Ab,xb
≤

√
2
k
(1 + γ)

(n
k

)

· 2k and Bx ≤
√
2
k
(1 + γ)

2n

Proof Fix γ > 0 and a coin flipping parameter δ > 0 small enough so that
(

1√
2
+ δ

2

)k
≤

√
2
k
(1+γ)
2k

. This can be achieved by taking δ = O(γk ). This sets an upper bound on the
probability of forcing a k bit-string using k coin flipping protocols each with a maximum
cheating probability of 1√

2
+ δ

2 . We now analyze each party cheating. For Alice cheating,

she has no control over the index set but she can try to force a particular bit-string for xb.
Her maximum cheating probability is

1
(n
k

) ·
(

1√
2
+
δ

2

)k

≤ 1
(n
k

) ·
√
2
k
(1 + γ)

2k
=

√
2
k
(1 + γ)
(n
k

)

2k
.

Bob has no control over Alice’s n − k remaining bits so Bob can cheat with maximum
probability

1

2n−k
·
(

1√
2
+
δ

2

)k

≤ 1

2n−k
·
√
2
k
(1 + γ)

2k
=

√
2
k
(1 + γ)

2n
. �

For the special case of
(

2
1

)

-fOT we have the following corollary.

Corollary 1 (Optimal
(

2
1

)

-fOT)

There exists a
(2
1

)

-fOT protocol where each party has honest outcome probabilities of 1/4
and neither party can cheat with probability higher than 1√

8
(1 + γ), for any γ > 0.

Note that we have strong coin flipping protocols with poly(m) rounds that achieve δ =
1

poly(m) . Hence, our protocol also achieves γ = 1
poly(m) with poly(m) rounds.

Last, we remark that this protocol is completely classical with the exception of the
quantum coin flipping subroutines. This is similar to the optimal coin flipping protocol in
[CK09] designed using classical messages and optimal quantum weak coin flipping subrou-
tines.
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